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1. Introduction 

The discovery of protein as a chemical entity is attributed to the 19th-century Dutch chemist 

Gerardus Johannes Mulder. Jöns Jakob Berzelius was the one who suggested this name, 

which originated from the Greek word πρῶτος (first), representing the importance of this 

biomolecule. Despite Mulder’s mistake in stating that the protein formula C40H31N5O12 is 

established beyond question, and the erroneous speculation that the protein is formed in 

plants and then introduced to animals through their food, Mulder’s description of the protein 

cannot be disputed: 

 

“It is one of the most complicated substances, is very changeable in composition under 

various circumstances, and hence is a source of chemical transformations, especially within 

the animal body. It is unquestionably the most important of all known substances in the 

organic kingdom. Without it no life appears possible on our planet. Through its means the 

chief phenomena of life are produced.” G.J. Mulder (English translation by P.F.H. Fromberg,  

1849). 

 

It took almost a century to obtain evidence that proteins are more than the nutrition or 

structural components of the cell. In 1926, James B. Sumner published a preliminary paper 

summarizing nearly a decade of his research on the enzyme urease. Sumner successfully 

crystallized protein from the jack bean extract and demonstrated that his protein crystals 

contained urease activity (Sumner, 1926). Although the theory that enzymes are derived 

from proteins had been postulated before (Fischer, 1907), Sumner’s report was controversial 

at the time and disputed by renowned scientists, including Nobel laureate Richard M. 

Willstätter (Willstätter, 1927). 

 

The following decades were marked by rapid development in protein separation, 

visualization, and identification (Figure 1). Arne Tiselius laid the foundation of protein 

mixture separation by electrophoresis in 1937. This method gradually evolved, employing  
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Figure 1. Milestones in proteome research (The official website of the Nobel Prize - 

NobelPrize.org; Edman and St Vincent, 1967; Tanford and Reynolds, 2003; Manchester, 

2005; Perrett, 2007; Asandei et al., 2020; Ho et al., 2020). 

 

different matrices for separation, finally reaching the form of polyacrylamide gel 

electrophoresis (PAGE). The combination of sodium dodecyl sulfate-polyacrylamide gel 

(SDS-PAGE) with isoelectric focusing has been indispensable for at least four decades of 

proteome research. In parallel, chromatography originally invented by Mikhail Tsvet was 

fully adapted in the 1960s for protein research, and the reverse-phase version of liquid 

chromatography (LC) has been an integral part of protein identification first via N-terminal 

sequencing and later in combination with mass spectrometry (MS).  
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The N-terminal sequencing was the first successful genome-independent method of protein 

sequence analysis. Pehr V. Edman published his version of the technique in 1950, a year 

before Frederic Sanger completed the insulin chain sequencing. Edman did not receive a 

Nobel Prize for his work, yet his method was more robust than Sanger’s, and its automated 

version was surpassed only in the late 1990s by MS. By the 1950s, MS was a well-

established technology for the analysis of volatile compounds. However, there were two 

obstacles limiting its application for proteomics. First, proteins are too large for gas 

chromatography and not volatile. Second, the original ionization methods were too harsh for 

fragile biomolecules, and the resulting fragmentation patterns were not useful for large-scale 

sequencing. The situation changed in the 1990s with the invention of soft ionization 

techniques. The resulting development rapidly transformed proteomics, steadily increasing 

the speed and sensitivity of the analysis. It is not likely that this development would be over. 

However, there are new emerging techniques that could eventually challenge MS dominance 

in proteomics. These include methods that can capture a single protein molecule, namely, 

cryo-electron microscopy and nanopore sensing.  

 

This thesis summarizes the current state of proteome research, discusses the benefits of 

proteome fractionation, and presents the application of plant proteomics in the analysis of 

germination, response to stimuli, pathogen detection, and biotic interactions. These 

examples are based on the author’s selected published and ongoing research and research of 

his students.   
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2. Fractionation techniques to increase plant proteome 

coverage 

Proteins are the dominant components of a cell, representing on average 15 and 18% of 

Escherichia coli and mammalian cells, respectively (Alberts et al., 2002). The exact 

proportion is development-dependent and may significantly vary for specialized tissues, but 

rough estimates indicate that this corresponds to a range of two to four million proteins per  

 

Figure 2. Composition of proteome (A) according to Ho et al. (2018) and simplified 

visualization of detection and quantitation limits in proteomics (B). 
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cubic micron (Milo, 2013). As illustrated in Figure 2A, most of these proteins usually belong 

to only a few highly abundant protein families. Ho et al. (2018) estimated that the median 

protein abundance in the yeast proteome is 2,622 molecules per cell and found that the 

difference in concentration between a low-abundance protein and a highly abundant protein 

can easily be five to six orders of magnitude. The dynamic concentration range is further 

expanded in multicellular organisms. The identity of the most abundant proteins is organism 

and tissue-specific. For instance, collagen is the most abundant protein in mammals, and 

RuBisCO may represent more than 30% of the soluble protein in photosynthetic organisms. 

Highly abundant proteins are also immunoglobulins, proteins of the translational machinery, 

energy metabolism enzymes, and histones. Despite the increase in sensitivity of proteomics 

tools, the total amount of protein that can be analyzed is finite and usually in the range of 

micrograms. The presence of highly abundant proteins that occupy this space thus affects 

the detection and quantitation limits and decreases the proteome coverage (Figure 2B). 

 

Proteome complexity is further increased by enzymatic and nonenzymatic posttranslational 

modifications (PTMs). This overall complexity represents a significant obstacle, and a high 

proteome coverage is achieved only by extensive fractionation on protein or peptide levels. 

This is best illustrated by two examples: Sun et al. demonstrated that 10 ng of protein (the 

equivalent of 20-200 cells) is sufficient for a proteome profile, yet the output was less than 

1,000 identified proteins (Sun et al., 2017). In contrast, Bekker-Jensen et al. employed 

several milligrams of protein, complementary digestion techniques, multi-step fractionation, 

and found over 14,000 proteoforms (Bekker-Jensen et al., 2017). For this reason, proteome 

fractionation is the best approach if a reasonable level of proteome coverage is to be achieved 

and a relatively large amount of starting material is available. 

2.1. Tissue separation 

A large-scale analysis of Arabidopsis thaliana tissue proteome found evidence for more than 

18,000 proteins and demonstrated tissue-specific protein localization (Mergner et al., 2020). 

Separation of plant organs is an effective tool for proteome fractionation and may provide 

an increase in proteome coverage, as well as novel insights into the organ-specific response. 

For instance, we have demonstrated the role of the shoot and root-specific response to 
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temperature (Dobrá et al., 2015; Skalák et al., 2016), observed light-dependent changes in 

the hypocotyl proteome (Luklová, 2018; Hloušková et al., 2019), and identified proteins 

involved in cytokinin-mediated leaf morphogenesis (Skalák et al., 2019).  

 

 

Figure 3. Leaf proteome analysis. (A) Principal component analysis of leaf proteome 

profiles of a four-week-old Arabidopsis plant and (B) Correlation of catalase isoforms 

abundance with leaf stage. Based on the estimated protein abundances of 2,591 proteins that 

were identified with at least two unique peptides; (C-D) Reproducibility of protein 

quantitation based on ten biological replicates. Adapted from (Liberdová, 2020) and 

unpublished results. 

 

Arabidopsis rosette presents a collection of different stages of leaf development, 

morphogenesis, and senescence. Consecutively, these leaves may have a different response 

to stimuli. To capture the underlying proteome composition, we dissected and analyzed all 

developed leaves of a four-week-old Arabidopsis plant. In total, we identified 4,347 proteins, 
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which was about two-fold more than what we found with the same method in the total shoot 

extracts of a similar plant (Prerostova et al., 2021). Proteome profiles of individual leaves 

showed a distinct age-dependent clustering (Figure 3A), and as exemplified by catalase 3, 

we observed interesting correlations of protein abundance with leaf stage (Figure 3B).  

 

Finally, we were interested in the biological variability in proteome composition and 

reproducibility of our method. We optimized the protein extraction step to minimize the 

sample loss, dissected a single cotyledon from seven-day-old seedlings, and analyzed its 

proteome. In total, over 3,500 proteins were found in all ten biological samples. The 

evaluation of standard deviation revealed that ten biological replicates are sufficient for 

revealing 1.5-fold differences in the abundances of 2,340 proteins (20% precision at 95% 

confidence level). For higher coverage, the ratio threshold or the number of biological 

replicates would have to be increased (Figure 3C-D). 

2.2. Subcellular plant proteome 

Not all proteins are functional at the site of their synthesis. Some are stored in an inactive 

form (e.g., proenzymes), some are being secreted, and some have to shuttle between 

organelles (e.g., signaling components). In essence, the subcellular location of a protein may 

be an integral part of its function. Plants show a high degree of cellular compartmentalization 

due to the presence of compartments like vacuoles and plastids, and it is estimated that the 

typical plant cell compartment contains 500–4,000 proteins (Millar and Taylor, 2014). 

Several approaches for subcellular proteome fractionation have been described, but not all 

organelles are easily accessible such as plastids, mitochondria, peroxisomes, and nuclei. 

Classical methods of gradient centrifugation are still desirable for the higher loading capacity 

yet have a lower resolving power and have to be optimized for the given tissue (Sikorskaite 

et al., 2013). Furthermore, the whole separation protocol usually takes over several hours, 

requires native conditions, and the protein composition may suffer. We compared the histone 

content in protein extracts obtained by total protein precipitation to that of the nuclei-

enriched fraction (Svetláková, 2017). The total amount of histones was significantly higher 

in the enriched fraction. Conversely, at least some members of the H1 family and H3 family 

were more abundant in the total protein extracts, indicating that the native extraction and 



Fractionation techniques to increase plant proteome coverage  

 

8 

 

percoll gradient fractionation are prone to nuclear protein loss. The spin column-based 

methods for separating nuclei are faster, yet the efficiency for plant material does not seem 

to be optimal. In our hands, the NE-PER extraction kit (Thermo) depleted cytosolic proteins 

but did not provide significant enrichment of nuclear proteins compared with the total protein 

extract (Svetláková, 2017).     

 

The proportion of subcellular proteins is tissue-specific. As can be seen in Figure 4, the 

enrichment of chloroplastic proteins in photosynthetic tissues will not provide significant 

benefits compared to the total protein precipitate, which is well in line with our results 

(Breineková, 2014).  

 

 
Figure 4. Subcellular plant proteome. The expected localization of all Arabidopsis proteins, 

proteins found in four-week-old Arabidopsis shoots (PXD020480), Arabidopsis seedlings 

(Berková et al., 2020; Included Publication 8), barley root (Berka et al., 2020b; PXD020627, 

Included Publication 7), barley embryo (PXD025075), and orchid tuber (PXD025095). 

Localization of Arabidopsis proteins and Arabidopsis protein orthologues predicted by 

SUBAcon algorithm (Hooper et al., 2017).  

 

As illustrated in Figure 4, the barley (Hordeum vulgare L.) embryo contains a substantial 

amount of putative extracellular proteins, which are predominantly utilized for nutrition 

acquisition from the seed aleurone layer. Extracellular proteins are an important part of the 
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plant proteome. These proteins encompass components of the apoplastic fluid, cell wall, as 

well as the plant secretome. The secretome plays crucial roles in anchoring the plant in its 

environment (Vincent et al., 2020), yet its analysis is more demanding and these proteins are 

usually underrepresented in a standard proteomics experiment.     

 

The fastest method for subcellular proteomics is a non-aqueous fractionation (Fürtauer et al., 

2019), but the boundaries between the organellar fractions are less defined and the method 

selectivity is not comparable to that of gradient centrifugation. The laser-assisted 

microdissection and flow sorting are promising but time-intensive techniques that may 

provide higher selectivity and spatial resolution (Day et al., 2005; Petrovská et al., 2014). 

However, these techniques are presently more suitable for transcriptomics analyses.  

2.3. Separations at the protein level 

Proteome fractionation at the protein level is probably the oldest technique in protein 

research. In 1888, Franz Hofmeister, a professor of pharmacology at the First Faculty of 

Medicine, Charles University in Prague, published his study about the effect of salts. 

Hofmeister studied the protein solubility in aqueous salt solutions and classified the ions in 

order of their ability to precipitate (salt out) the proteins. The exact mechanism of the so-

called Hofmeister effect is still under debate (Kang et al., 2020), but the salting-out technique 

was indispensable for early protein research, and the ammonium sulfate precipitation became 

a common purification step. Conversely, the presence of salts interferes with proteomics 

techniques and salts have to be removed by dialysis or filtering. Alternatively, proteins may 

be precipitated by nonionic water-soluble polymers, in particular polyethylene glycol (PEG). 

That technique was introduced in the 1960s (Polson et al., 1964) and can be employed for 

proteome fractionation and selective depletion of highly abundant proteins such as RuBisCO 

(Sehrawat et al., 2013). In our experiments, the PEG fractionation was one of the most 

effective protein fractionation techniques and was surpassed only by SDS-PAGE 

(Habánová, 2016).  
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Figure 5. Separation at the protein level. (A) Native extraction and PEG fractionation; (B) 

Denaturing protein extraction and protein digestion. (a–g) Protein extraction and 

purification. (h) Determination of protein concentration, (i1–2) protein separation, and (i3, 

j) digestion (Adapted from Černý et al., 2019; Included Publication 5). 
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There are many other dedicated techniques for protein separation, and most are derived from 

LC, PAGE, and affinity/immunoaffinity separations. The broad overview is summarized in 

our review about the separation of posttranslationally modified proteins (Černý et al., 

2013b), and techniques suitable for general proteome analysis are outlined in Figure 5 and 

Included Publication 5. 

2.4. Separation at the peptide level 

There have been tremendous advances in the LC-MS analysis of intact proteins during the 

last decade. The combination of different fragmentation strategies, higher precision and 

resolution, and ion mobility spectrometry has extended the detection limits of high-

throughput top-down analysis of whole proteomes (Cleland et al., 2017; Griffiths et al., 

2020). Despite the increased efficiency and success of top-down analyses in the detection of 

previously uncharacterized biologically relevant modifications, the peptide level bottom-up 

proteomics analysis is still a superior technique for maximizing the proteome coverage. 

Furthermore, with high orthogonality to the protein level separation, peptide fractionation 

steps can be added to any protein separation workflow that has sufficient protein input 

(Wilhelm et al., 2014; Mergner et al., 2020). The reversed-phase C18 LC is the most 

common separation method for complex peptide mixtures. Several factors influence its 

resolution (peak capacity), including temperature, column length, and gradient slope. In 

general, the column length and gradient slope are proportional and inversely proportional to 

the resolution, respectively (Breineková, 2014). The length of commercially available 

columns has reached 200 cm (e.g., PharmaFluidics Micro Pillar Array Column), but the 

column cost and measuring time per sample are high. Alternatively, the peak capacity is 

increased by coupling multiple separation methods, and the effectiveness is determined by 

the degree of separation orthogonality. Strong-cation-exchange chromatography (SCX) is 

the most common method used in the first dimension of multidimensional peptide LC-MS  

(Manadas et al., 2010). However, the online setup has limited capacity for chemicals that are 

incompatible with LC-MS, and the so-called off-line fractionation techniques using stand-

alone LC or solid-phase extraction columns are more convenient. A simple workflow is 

illustrated in Figure 6 and Included Publication 5. 
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Figure 6. Separation at the peptide level. C18 desalting, high pH fractionation, and SCX 

fractionation. Adapted from Černý et al. (2019), Included Publication 5. 

 

The major disadvantage of fractionation techniques is the inherent increase in the number of 

samples that have to be analyzed. For the fractionation at the peptide level, concatenated 

methods have been developed (e.g., Kulak et al., 2017). Concatenating multiple contrasting 

fractions that have little overlap improves analysis coverage while maintaining reasonably 

high throughput. That is especially important for quantitative analyses of discontinuous 

fractionations for which identical peptides may be found in multiple fractions, and the 

precise quantitation without an internal standard may be difficult.   

2.5. Comparison of fractionation techniques 

The success of a proteomic analysis depends on the ability to detect most of the possible 

number of proteins or protein families in the sample, including the low-abundant ones. 

Furthermore, a high protein sequence coverage is necessary for confident identification and 

quantitation. To date, there is no single separation technique with sufficient capacity to 

resolve complex biological samples. However, fractionation requires a relatively large 

amount of starting material, and the methods are time-consuming. This problem can be 

circumvented by targeted methods that improve detection limits but require the availability 

of a reference peptide spectral library (Černý et al., 2019; Included Publication 5).  
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Figure 7. Barley seed proteome fractionation. (A) Visualization of tissue, protein and 

peptide fractionation (not including experimental replicates); (B) Overview of the Skyline 

library construction; (C) Number of identified proteins and peptides and (D) an overlap in 

identified proteins between the five selected datasets; PEG, polyethylene glycol; IEF, 

isoelectric focusing (Off-gel); SDS-PAGE, polyacrylamide gel electrophoresis; SCX, strong 

cation exchange chromatography; ACN, acetonitrile; LUMOS, independent analysis with a 

high-end MS (Adapted from PXD020324 and Habánová, 2016). 
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Experimental libraries are available, but plant samples are seriously underrepresented 

(PeptideAtlas). Hence, we decided to build our spectral library for barley seed proteome. 

The seed proteome includes several highly abundant grain storage proteins, complicating the 

analysis of less abundant ones. First, a barley peptide spectral library was constructed by 

analyzing more than 50 fractions of the barley grain proteome obtained by complementary 

fractionation techniques, including PEG precipitation, SCX, Off-Gel separation, SDS-

PAGE, acetonitrile elution gradient, and ProteoMiner protein enrichment. In total, 4,303 

proteins were identified: three- to four-fold more than we obtained by standard proteome 

profiling, using the same LC-MS instrumentation and a 120-minute ACN gradient (Figure 

7, Habánová, 2016). Next, the collected spectra were used to develop a targeted assay for 

large-scale targeted multiple reaction monitoring-based protein analysis. Finally, the 

targeted method was validated using 72 different seed stocks. We were able to detect at least 

70% of the library proteins, but the quantitative data were suitable only for 1,544 and 785 

grain peptides and proteins, respectively. Notably, that is still a superior result compared to 

the quantitation limits of our qTOF instrument that was used for the library construction.
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3. Proteomics of seed, germination and early development 

3.1. Germination 

Plants are sessile organisms and have evolved a broad spectrum of mechanisms to cope with 

unfavorable environmental conditions. Probably the most amazing is the ability to postpone 

growth, minimize metabolic activity, and wait for conditions to improve. The survival and 

persistence of numerous plants strongly depend on successful reproduction by seed. The so-

called orthodox seeds sustain intense desiccation at the end of their maturation and retain 

embryonic cell viability in the dry state, which can extend over centuries (Rajjou et al., 

2012). The mature seeds of most species require at least a short period of dormancy. That is 

a physiological state in which seeds will not germinate even under optimal conditions. 

However, the metabolic activity under suitable environmental conditions is usually restarted 

following a simple uptake of water (imbibition). Behind this apparent simplicity lies a 

complex mechanism integrating internal and external stimuli that coordinates cellular events 

to allow the embryo to emerge and regulates subsequent seedling growth. The process can 

be separated into three distinct stages that correlate with water uptake by germinating seeds. 

Initially, the rapid water uptake is observed, and cells within the seed become hydrated, and 

energy metabolism is initiated. During the second phase, the seed water content is relatively 

constant, and the germination of a seed is completed with the emergence of the embryo from 

its enclosing covering (visible germination). In the third phase, the water uptake is increased 

as the emerging seedling becomes established and utilizes stored reserves (Nonogaki et al., 

2010; Rosental et al., 2014). 

 

The energy and building blocks required to support the fully heterotrophic process of seed 

germination are predominantly stored in lipids, starch, and proteins in the form of lipid 

bodies, amyloplasts and protein bodies, respectively (Bewley et al., 2013). Proportions of 

these reserves in seeds are taxon specific and reflect natural adaptation and evolution, and in 

seeds of crop species the effects of selective breeding. For instance, more than 70% of energy 

reserves in seeds of crops such as wheat (Triticum aestivum L.) and barley  are in the form 



Proteomics of seed, germination and early development  

 

16 

of starch, while triacylglycerols and proteins are the main reserves in Arabidopsis thaliana 

seeds, which have less than 0.05% starch contents (Baud et al., 2002). Conversely, orchids, 

which represent one of the largest families in the plant kingdom, form deficient and dust-

like seeds that fully rely on mycorrhizal fungi for organic carbon and other nutrients. 

3.1. External stimuli regulate germination and early development 

Many known external factors determine the rate and extent of germination, and nondormant 

seeds exposed for some time to unfavorable germination conditions may even enter a state 

of dormancy again. The most essential factors are water availability, temperature, light, and 

nutrients (Bentsink and Koornneef, 2008; Bewley et al., 2013). In most plant species, seeds 

can remain desiccation-tolerant even after initial imbibition, but a shortage of water after 

radicle emergence would retard growth and decrease viability. Some consider temperature 

to be the most critical environmental factor in regulating seed germination. Consequently, 

there is an optimal temperature range for seed germination, below and above which seed 

germination of the given species will be inhibited (Wang et al., 2015; Zou et al., 2015). 

Temperature-sensing mechanisms in plants are sensitive, capable of registering changes of 

1 °C (Penfield, 2008). However, despite recent advances, the primary temperature sensor(s) 

and molecular mechanisms underlying temperature perception in plants are far from being 

resolved. It seems that nucleosomes, photoreceptors, sequences of messenger RNAs, a 

transcription factor part of a circadian clock, the physical state, and lipid composition of 

cellular membranes, as well as plant hormones, may serve as thermosensors (Černý et al., 

2014; Jung et al., 2016, 2020; Shen et al., 2019; Lin et al., 2020). 

Plants use many types of photoreceptors that are sensitive to light of various wavelengths. 

The most prominent are four classes, namely, phototropins, phytochromes, cryptochromes, 

and UVR8 (Kong and Okajima, 2016). Among these, phytochromes were identified as 

receptors involved in seed germination, with PhyB being the most important in the process 

(Bewley et al., 2013; Liscum et al., 2014). Light is a stimulant of germination for small seeds 

with limited nutrient reserves. On the other hand, high fluence rates of light inhibit the 

germination of many species, presumably to prevent seedling damage from intensive solar 

radiation.   
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Finally, seeds of many species will promote germination in the presence of ample nutrient 

supply that could signal the absence of a competitor plant. For example, nitrate ions in the 

millimolar range stimulate germination (Bewley et al., 2013).     

3.2. Internal stimuli regulate germination and early development 

Phytohormones gibberellins and abscisic acid govern the checkpoints in the metabolic 

transition from dormancy to germination, promoting and inhibiting the process, respectively. 

Besides, other known phytohormones and growth-promoting substances are needed (at least 

to some extent). For instance, brassinosteroids and ethylene suppress abscisic acid and 

stimulate germination (Corbineau et al., 2014; Hu and Yu, 2014). Strigolactones stimulate 

germination of parasitic plant species and alleviate seed thermoinhibition (Toh et al., 2012). 

Nitric oxide stimulates seed germination (Beligni and Lamattina, 2000), as do karrikins, 

substances identified in smoke from burning vegetation (Nelson et al., 2012). Salicylic acid 

may promote germination under salt stress, but it inhibits germination via reduction of 

amylase expression (Rajjou et al., 2006; Xie et al., 2007). The cytokinin pool increases after 

imbibition and may trigger abscisic acid-insensitive seed germination (Wang et al., 2011; 

Stirk et al., 2012). In contrast, jasmonic acid and oxylipins inhibit germination (Dave et al., 

2011; Linkies and Leubner-Metzger, 2012), and an increase in auxin signaling or 

biosynthesis greatly enhances seed dormancy (Liu et al., 2013). Not surprisingly, all these 

signals interact and share some common mechanisms, including proteasome signaling and 

redox homeostasis.  

A major redox metabolite is hydrogen peroxide, and at high concentrations induces oxidative 

damage to biomolecules, which can culminate in cell death. However, at concentrations in 

the low nanomolar range, H2O2 acts as a signaling molecule and in many aspects, resembles 

phytohormones. For instance, it has dedicated catabolic and anabolic pathways, and it is 

perceived by several receptors, including Leucine-rich repeat receptor kinase (Wu et al., 

2020). Its role in plant growth and development is summarized in Figure 8 and Included 

Publication 4.  
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Figure 8. The role of hydrogen peroxide in germination is similar to that of a growth 

regulator. H2O2 promotes endosperm weakening, triggers an increase in gibberellin 

biosynthesis, and a decrease in abscisic acid levels. It mediates selective oxidation of mRNA 

and proteins, activation of α-amylase, and the promotion of programmed cell death (PCD) 

in the aleurone layer. Conversely, an accumulation of reactive oxygen species in quiescent 

seeds is a sign of aging and may cause significant damage to storage molecules and loss of 

viability. For details, see Included Publication 4 and references therein (Černý et al., 2018). 

3.3. Monitoring of seed germination 

A common scoring method for monitoring seed germination is to evaluate its final point, the 

visible germination manifested by the emergence of the radicle tip. Efficient seed 

germination is an important trait for agriculture, and automated seed imaging systems have 

been developed to circumvent laborious subjective methods that are often prone to 

experimental error (Colmer et al., 2020). However, germination has three distinct phases, 

and the early events following water uptake are much harder to evaluate. Imbibition 

increases the seed’s water content and volume, yet these processes occur even in those seeds 

that will not germinate. Direct imaging of the hidden phase of germination is possible with 

X-ray computed tomography (Ahmed et al., 2018) and magnetic resonance imaging (Munz 

et al., 2017). These techniques can monitor the radicle growth of individual seeds and 

evaluate the progress of germination. Equally, germination progress is correlated with the 

mobilization of storage proteins, and monitoring of these can provide an estimate for a single 

seed or the whole population. As illustrated in Figure 9A, the mobilization of storage proteins 

corresponds to the observed radicle length. We have also found that the relative conductivity 

of steep water is negatively proportional to the radicle length and that this simple technique 
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can be utilized for a rapid determination of the germination progress of the seed population 

(Figure 9B).  

 

Figure 9. Monitoring of barley seed germination. (A) The relative abundance of the two 

major storage proteins and (B) the relative conductivity of steep water are negatively 

proportional to radicle growth (Adapted from Berka, 2019, and patent application n. PV 

2019-411). 

 

We found that the dependency can be simplified to the following Equation 1: 

 

[Radicle length] = a × [Relative conductivity] b 

Equation 1. Parameters a and b are constants that have to be determined for the given set of 

seeds. 
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Figure 10. Hydrogen peroxide stimulates barley germination and is actively decomposed by 

secreted peroxidases. (A) Germinating barley grains 24 h after imbibition with hydrogen 

peroxide; (B) Concentration of hydrogen peroxide in the imbibing solution. Results 

represent means and standard deviation of three biological replicates; Statistical significance 

ANOVA p<0.05; (C) Peroxidase activity in the steep water collected 24 h after the initial 

imbibition. Reaction mixtures contained 100 μl of steep water, 0.33% (v/v) Triton X-100, 

and 10% H2O2. Activity was fully abolished in the presence of 1 mM sodium azide (2). For 

details, see (Berka, 2017, 2019). 

 

In our experiment with germinating barley, the conductivity of more than sixty individual 

seeds was measured. Next, seeds were dissected, and the radicle lengths were determined. 

Parameters a and b were found to be 0.54 and -1.21, respectively. The method was validated 

by measuring ten sets of seeds, and the average ratio between the estimated radicle length 
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and the experimental data from radicle measurements was 0.93±0.13, indicating that the 

method is reliable. The results were summarized in the patent application n. PV 2019-411.   

3.4. Hydrogen peroxide is decomposed by enzymes secreted from barley grain 

Hydrogen peroxide is a potent stimulator of barley germination (e.g., Ishibashi et al., 2017), 

which was confirmed in our experiments (Figure 10A, Berka, 2017). Surprisingly, we also 

observed its rapid decomposition in the imbibing solution (Figure 10B). We confirmed that 

this process is catalyzed by enzymes secreted from the germinating grain and found the 

activity inhibited by sodium azide (Figure 10C). Finally, proteomics analysis of the steep 

water content associated the activity with the enzyme peroxidase HORVU2Hr1G044360, 

the seventh most abundant protein in the list (Berka, 2019). The set of secreted proteins 

included proteins with putative roles in plant defense, including chitinases, cysteine-rich 

proteins, thaumatin-like proteins, and proteases. That would indicate that the secreted 

peroxidase may have a role in plant biotic interactions.  

3.5. Eggplant germination is promoted by hydrogen peroxide and temperature 

in an independent but overlapping manner 

Eggplant (Solanum melongena) is believed to have originated in tropical regions. Its seeds 

require a warm temperature for germination and are characterized by a relatively slow 

germination rate (Figure 11A-C, Included Publication 6). We observed that hydrogen 

peroxide may promote eggplant germination in a way not dissimilar to that of increased 

temperature stimuli (Figure 11C). However, our analysis of the total protein extracts found 

only a very low overlap between hydrogen peroxide and temperature-responsive proteins. 

Only five of the differentially abundant proteins showed a similar response to temperature 

increase and to the hydrogen peroxide treatment, including four ribosomal proteins and a 

putative persulfide dioxygenase (Included Publication 6).  

 

We believed that the hydrogen peroxide treatment would have a stimulating impact on the 

eggplant seed’s endogenous hydrogen peroxide metabolism, but the only significant change  
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Figure 11. Eggplant germination is promoted by hydrogen peroxide and temperature in an 

independent but overlapping manner. (A, B) Hydrogen peroxide significantly promotes 

eggplant seed germination at low mM concentration. Representative images of germination 

assays at 72 h after imbibition; (C) Both temperature and hydrogen peroxide promote 

eggplant germination; (D) Comparison of germinating seed proteomes at 72 h after 

imbibition. The separation of replicate averages (± SD) highlights a distinct clustering of 

seeds germinated at 25 and 29 °C (separated in PC1) and a less significant separation of the 

hydrogen peroxide treatment in PC2; The experiments were conducted in up to eight 

biological replicates, each consisting of three independent sets of 50 seeds. Letters and 

asterisks indicate statistically significant differences determined by Kruskal-Wallis and 

Student’s t-test, respectively. For details, see Included Publication 6. 

 

that was determined was the abundance of catalases that were depleted in response to 

hydrogen peroxide. Similarly, multiple orthologues of known hydrogen peroxide-responsive 

proteins were depleted in eggplant seeds germinated in the presence of hydrogen peroxide. 

This led us to the hypothesis that the hydrogen peroxide treatment boosted the seed′s 

scavenging mechanisms, resulting not only in the elimination of the supplied hydrogen 

peroxide but also in the depletion of its endogenous pool. We have observed a similar effect 
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on the enzyme superoxide dismutase in barley (Berka, 2017). However, given the significant 

differences in the development, that possibility was dismissed (Figure 10A). Eggplant 

germination is much slower, and we were able to preselect seeds with a seemingly similar 

development stage for the proteome analysis. The decrease in hydrogen peroxide metabolism 

and response was found at both temperature regimes, and it is thus unlikely that this would 

reflect a developmental effect. We could speculate that the germination that promoted the 

effect of hydrogen peroxide was the result of hydrogen peroxide scavenging metabolism 

mobilization. 

3.7. Environmental impacts on barley grain composition 

Seeds exhibit memory of the parental environment (Fernández-Pascual et al., 2019).  To 

observe the effects of variations in environmental factors on grain composition, we selected 

12 barley breeding stations, with altitudes ranging from 190 to 647 m, and widely differing 

average monthly temperatures and rainfall (up to 2.3-fold), and yield (up to 2-fold in grain 

mass per unit area during our sampling year) (Figure 1A-C). Three high-quality malting 

varieties of Hordeum vulgare L. sensu lato (spring barley Sebastian, Bojos and Kangoo) 

were selected, and each of them was cultivated in two independent fields per breeding 

station. 

 

To estimate the optimal sample size for the experiment, we used the results of germination 

assay described in Chapter 3.3 and determined that at least seven grains should be analyzed 

to compensate for the expected biological variability in the population. Accordingly, in the 

following proteomics analyses we used 10 randomly selected grains representing each 

combination of variety and field per locality for large-scale profiling and 20 from plants in 

one of the fields per variety in each locality for in-depth analyses. 

 

Rough estimates based on calculated peptide and protein abundances indicate that the 

quantifiable proteins accounted for ca. 80% of the total grain protein content, with 

quantitation limits ranging between 0.004 and 430 µg of protein per grain. The most 

abundant proteins were carbohydrate-active enzymes (CAZymes), storage proteins, proteins 

involved in proteosynthesis, protein folding and protein degradation, and protein inhibitors. 
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Cross-location comparison revealed that the composition of these categories was not 

identical, but the total average amount was mostly comparable (Figure 12D-E). The only 

striking differences, relative to average abundances, were in samples from location 2 

(significantly higher contents of LEA and reactive oxygen species-related proteins), 5 (lower 

contents of proteins involved in folding, storage and LEA proteins) and 11 (significantly 

higher contents of CAZymes, storage proteins and proteins involved in proteosynthesis). 

 

Figure 12. Proteome composition of seeds from different locations. (A, B) Average 

temperature and rainfall in the 30 days preceding harvest at each location; (C) Documented 

yield; (D) Average protein composition of seeds from all locations (wheel diagram) and (E) 

abundance of proteins of indicated major categories of seeds from each location (estimated 

from the mean peptide and protein abundances; bar chart). Adapted from Habánová, 2016 

and Dufková et al. (Manuscript in preparation). 

 

The key environmental factors affecting seed production, at least in agricultural areas where 

there are no severe nutrient limitations or other stressors, are temperature and water 
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availability. Thus, correlations with these factors were analyzed in detail. We compared 

profiles of quantified peptides to average temperature and rainfall data during the 30 days 

preceding the harvest. The material representing each combination of field and variety was 

considered as an independent biological replicate, providing six data points per location. 

Partial Least Squares modelling revealed that profiles of peptides originating from 150 

proteins were significantly correlated with average temperature (VIP score >1.4, correlation 

coefficient >0.6): 84 positively and 56 negatively. This represents more than 12% of the 

targeted proteins and at least a quarter of the total grain protein content. Several distinct 

clusters were revealed, indicating positive correlations between temperature and ribosomal 

proteins, proteins involved in translation and lipid droplet formation, CAZymes, and 

(unsurprisingly) heat-shock proteins (HSPs). We also observed temperature-related 

accumulation of GF14 (HORVU4Hr1G043300), a 14-3-3 orthologue of a protein associated 

with heat stress transcription factors. Positive correlations were also found for histone family 

protein, farnesyl pyrophosphate synthase, and glucosidase. Surprisingly, we detected 

negative modulation of protein inhibitors (ca. 28%) and multiple proteins reportedly 

involved in seed development, including Translationally Controlled Tumor Protein and 

adenosylhomocysteinase. Rainfall did not seem to have strong linear effects on grain protein 

composition. The cumulative seasonal data correlated with the highest number of proteins 

(10), in many cases in an inverse fashion to their correlation with temperature. These 

relations included negative correlations with the abundance of the storage protein germin 

and two enzymes: farnesyl pyrophosphate synthase and pyrophosphate-fructose 6-phosphate 

1-phosphotransferase. 

3.6. Heat shock proteins in seed viability and germination 

HSPs are ubiquitous and widely spread proteins across all taxonomic kingdoms and are 

divided into five groups according to their size (HSP100, HSP90, HSP70, HSP60, and small 

sHSP) (e.g., ul Haq et al., 2019). HSPs were first discovered in response to an increase in 

temperature, but accumulated evidence indicates that these proteins are involved in diverse 

processes. Plants contain a wide spectrum of HSPs that interact with pleiotropic factors 

involved in the signaling pathways of multiple abiotic and biotic stress responses. Besides 

their chaperon functions, HSPs participate in proteasomal degradation, protein-protein 



Proteomics of seed, germination and early development  

 

26 

interactions and may also play a role in signaling cascades (e.g., McLoughlin et al., 2019; 

Khan and Shahwar, 2020; Tichá et al., 2020). HSPs interact with key components of the 

circadian clock and a depletion of HSPs lengthens the circadian period (Davis et al., 2018). 

Furthermore, HSP90 and HSP70 play an essential role in the plant defense signal 

transduction pathway (Chapter 5.3). Despite the name, HSPs are not always induced by 

temperature. For instance, our proteomic analyses of germinating eggplant did not find any 

effect of temperature, but all three detected sHSPs showed a significant decrease in 

abundance in response to hydrogen peroxide treatment, and two HSP70s were depleted in 

the presence of hydrogen peroxide at 29 °C (Habánová et al., 2019; Included Publication 6). 

The observed decrease of sHSP could coincide with decreasing abscisic acid sensitivity 

because the overexpression of its Arabidopsis orthologue showed hypersensitive response to 

abscisic acid (Kim et al., 2013a). In accordance, our analysis revealed the presence of 

putative abscisic acid-responsive cis-regulatory elements for at least five genes encoding 

hydrogen-peroxide-depleted proteins.  

 

HSPs may also play a role in seed longevity (Kaur et al., 2016). Our analysis of the 

environmental impact on barley grain proteome composition revealed two outliers 

associated with locations 5 and 11. These locations represent highly contrasting conditions 

(low yield, high temperature, and low rainfall at location 11; high yield, above average 

temperature, and high rainfall at location 5; Figure 12A-C). We selected representatives of 

two of the other clusters - location 2 (average yield, low temperature, very high rainfall) and 

8 (average yield, low temperature, average rainfall) - and evaluated the seed viability and 

longevity (by measuring ion leakage and germination percentage of artificially aged grains, 

respectively) of grains collected from these locations (Figure 13). Our accelerated ageing 

experiments revealed that grains from locations with relatively high temperature and low 

rainfall had significantly higher resilience than grains from other locations, and the 

consecutive proteomics analysis found that this trait could coincide with a significantly 

higher abundance of proteins involved in abiotic stress adaptation, including LEA proteins, 

HSP-family proteins (HSP90, four HSP70s and 14 small HSPs), HSP organizing protein and 

chaperones (Figure 13B-C).  
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Figure 13. Putative positive markers of seed resilience. (A) Relative conductivity (left) and 

seed germination after accelerated ageing (right); (B) The separation of seed proteomes from 

contrasting locations. Colors indicate locations 2 (dark grey), 5 (green), 8 (light grey), and 

11 (orange). Different letters indicate significant differences (ANOVA, p<0.05). Adapted 

from PXD020324 and Dufková et al. (Manuscript in preparation). 

 

3.7. Modification of storage proteins may represent a form of abiotic stress 

memory  

Proteins are major targets of oxidative stress (Černý et al., 2013b), and as storage proteins 

serve dual nutritive and protective roles, it is likely that the environmental conditions could 

result in unique PTM patterns. We have tested the possibility of using peptide quantitation  
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Figure 14. Putative environmentally-dependent PTMs of the major storage proteins in barley 

grain storage proteins. (A) Simplified diagram illustrating the detection of modified 

sequences; (B) Targeted quantitative analysis of tryptic peptides originating from Serpine 

Z4, and identification of modified sequences in response to extreme temperature stimuli (left 

part, 99 °C for up to 24 h), and hydrogen peroxide (right); (C) Predicted 3D model of 

globulin-2 with highlighted identified peptides (red, magenta, green - significant differences 

in at least one of four locations; grey - no significant difference in abundance; yellow - 

accessible residues prone to deamidation); (D,E) Corresponding sequence visualization by 

Protter (Omasits et al., 2014) and quantified relative abundances. Bar plots representing 

means of three biological replicates and standard deviations; Different letters indicate 

significant differences (Kruskal-Wallis test, p<0.05); 3D models constructed with Phyre 2 

(Kelley et al., 2015). Adapted from Dufková et al., (Manuscript in preparation) and 

(Blaženiaková, 2017). 
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for monitoring the occurrence of these PTMs in storage proteins. As illustrated in Figure 

14A, the presence of unknown PTMs should result in a decrease in the corresponding PTM-

free peptides’ abundances. First, we probed Serpin-Z4, which is  a highly abundant barley 

grain protein. We optimized the targeted method for analysis of 14 of its tryptic peptides, 

representing more than 50% of the protein sequence coverage. Next, we incubated barley 

grain powder at 99°C for 0.5-24 h or with hydrogen peroxide (0-30%), extracted proteins 

and analyzed the abundances using the developed targeted method. Abundances of seven 

and four peptides were significantly decreased by heat and oxidative damage, respectively 

(Figure 14B, Blaženiaková, 2017). We have employed a similar strategy to observe changes 

that could correlate with seed longevity and analyzed the most abundant grain protein 

globulin-2 (HORVU4Hr1G002800). Abundances of peptides covering most of the protein 

sequence were similar, but only samples from location 5 showed no significant depletion of 

the observed PTM-free peptides. In total, four regions were found to be underrepresented in 

peptides in samples from locations 2, 8, or 11 (Fig. 14C-E). Structural analysis, based on 

orthologue modelling, indicated that these regions are on the protein surface and thus 

accessible for PTM (Fig. 14C). These results provide a significant first step towards 

understanding the complex role of storage proteins in seed protection and longevity.
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4. Analysis of signaling and phytohormone responsive 

proteins 

4.1 Role of proteome in signaling 

The signaling cascade comprises the perception, transduction, and response processes. The 

fastest responses mediated via allosteric control occur within milliseconds (Figure 15). 

Allosteric modulators are small molecules that bind to a protein, induce conformational 

changes in its structure, and modify its activity. It is well known that a calcium ion flux can 

act as a regulator in this way, and there are over 82,000 different known allosteric modulators 

listed in the AlloSteric Database (Liu et al., 2020), including 60 ions, 614 polypeptides, and 

81,396 other compounds. The second level of regulation is governed by protein PTMs and 

occurs typically in minutes. The most common PTMs in plant signaling are phosphorylation, 

ubiquitination, and redox modifications (Černý et al., 2016; Included Publication 1). The 

final level of regulation is the slowest process, with an effective time span of hours. It is 

mediated by gene expression and the transcription-translation machinery. It is the best-

understood part of plant signaling but has its limits. The presence of an mRNA does not 

guarantee that the corresponding protein is being translated. On the other hand, the absence 

of mRNA expression does not exclude its protein’s presence. There are many reasons for 

that. First, translation elongation rates differ between mRNAs. That is primarily due to codon 

usage and the availability of the corresponding tRNAs (Riba et al., 2019). It has also been 

shown that post-transcriptional regulations may significantly impact the translation rate 

(Arango et al., 2018) and maybe even change the resulting protein sequence (Eyler et al., 

2019). The additional factor is protein life span. The experiments showed that the half-lives 

vary greatly, ranging from hours to a day (Chen et al., 2016). Optimistic estimates based on 

available results indicate that differences in protein concentrations are only 30–40% 

attributable to mRNA levels (Vogel and Marcotte, 2012). Furthermore, the comparison of 

related species showed that genes with significant expression differences between species at 

the mRNA level had little or no difference in protein abundance (Khan et al., 2013). That 

would imply that protein abundances evolve under a higher evolutionary constraint than 
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mRNA expression levels. To conclude, proteome analysis would be far superior to 

transcriptomics in reflecting the molecular mechanisms of a cell if the present-day sensitivity 

limits were to be overcome. 

 

 

 

Figure 15. Signaling mechanisms (Černý et al., 2016; Included Publication 1). 

 

4.2 Early response proteins 

The regulatory circuits that induce changes in transcription patterns and (hence) protein 

biosynthesis occur within a few minutes of the perception of stimuli, and thus proteomics 

experiments describing early signaling events that occur 5–15 min after exogenous treatment 

are of particular interest. However, these experiments are inherently more demanding and 

prone to experimental bias. For instance, the treatment may unintentionally trigger touch and 

wound signaling responses, and it has been demonstrated that a long-distance wound signal 

mediated by a glutamate receptor is being transmitted throughout the plant body within 

120 s (Toyota et al., 2018). A similar rapid response has been found for light-induced 
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reactive oxygen species production (Yokawa et al., 2011). The major disadvantage of early 

response proteomics is the limited interpretability of the obtained data. Knowledge of the 

role of PTMs in protein activity is scarce, and independent validations via transcriptomics 

analysis are usually not possible. That probably explains that analyses of early-responsive 

proteins represent less than 10% of phytohormone proteomics (Černý et al., 2016; Included 

Publication 1). Indeed, most of the putative signaling mechanisms found in our proteomics 

analyses have not yet been validated. On the other hand, our proteome analysis indicated a 

role of calcium ion signaling in cytokinin-induced phosphoproteome dynamics, and we 

proved that by cotreatment with calcium signaling inhibitors (Černý et al., 2011). Similarly, 

we have confirmed with mutant genotypes the putative link between cytokinin and the 

perception of alleviated temperature (Černý et al., 2014) and its role in heat stress (Dobrá et 

al., 2015; Skalák et al., 2016).  

 

An additional obstacle in early response protein analysis is the methodology because the 

standard high-throughput shotgun LC-MS proteomic approach is not optimal for monitoring 

PTMs. That can be illustrated in our study of early response to the growth regulator karrikin. 

Out of all 113 karrikin-responsive proteins, 49 and 74 were found by LC-MS and 2-DE, 

respectively (Baldrianová et al., 2015). That is a strikingly different ratio to that observed in 

our proteome analysis of transgenic Arabidopsis seedlings CaMV35S>GR>HvCKX2. In that 

study, 24 h after dexamethasone-induced expression, 107 and 19 differentially abundant 

proteins were revealed by LC-MS and 2-DE, respectively (Černý et al., 2013a).  

 

Despite the fact that PTMs are probably the major regulatory circuit of early response, the 

total protein content is altered too. Some genes have very high transcription rates, reaching 

more than 100 mRNAs per hour (Hausser et al., 2019). The rate of proteosynthesis is usually 

within the range of 1-20 amino acids per second (Riba et al., 2019), but polysomes may 

produce more than 1000 proteins per mRNA per hour. Similarly, protein degradation is 

rapid. The catalytic efficiency of some proteases is reaching that of enzymes limited by 

diffusion (up to 107 M-1s-1; Dickey et al., 2013), and the 26S proteasome, an integral part of 

all known phytohormone signaling pathways, may cleave proteins with an average speed of 

40 amino acids per second (Peth et al., 2013). Our analysis of cytokinin and temperature-
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shock response proteins found the ratio between decreased and increased protein spots to be 

in favor of repression (~2-fold), indicating that degradation could be the dominant factor in 

the regulation of early response proteome (Černý et al., 2011, 2014).   

 

 

Figure 16. Proteasome mediated degradation - the point of convergence for phytohormone 

signaling (Černý et al., 2016; Included Publication 1). 

 

 



Analysis of signaling and phytohormone responsive proteins  

 

34 

4.3 Proteasome mediated regulation of plant proteome 

Modification of substrate proteins by ubiquitin is one of the major regulatory events in 

eukaryotic cells, and plants use this modification to react to exogenous and endogenous cues. 

More than 6 % of the Arabidopsis genome encodes components of the ubiquitin conjugation 

system (Vierstra, 2009). In effect, most plant regulatory circuitry and many steps of process 

execution depend on ubiquitin modification. Substrates modified by conjugation to ubiquitin 

are usually degraded via the proteasome, and this protein turnover-dependent regulation is 

common for phytohormone signaling pathways (Figure 16). 

4.3.1 Effects of proteasome inhibition on plant growth and response to cytokinin 

In 2013, a family of F-box proteins KMD was found in the control of cytokinin signaling by 

regulating the proteasome-mediated degradation of type-B response regulators (Kim et al., 

2013b). We were interested in this response and its effect on cytokinin response proteins 

(Dufek, 2014, 2016; Luklová, 2016). Two alternative approaches were employed, namely, a 

proteasome inhibitor MG-132 and the transgenic Arabidopsis line harboring modified 

ubiquitin ubR48 under the control of the dexamethasone-inducible promoter (Schlögelhofer 

et al., 2006). This modified ubiquitin is used like endogenous wild-type ubiquitin for 

conjugation to substrates but does not support the formation of ubiquitin–ubiquitin linkages 

via Lys 48 that are necessary for proteasome-mediated degradation. First, we analyzed root 

growth and found that proteasome inactivation inhibited root growth. The application of 

exogenous cytokinin had an additive effect, but only for low and saturating concentrations 

of dexamethasone (Figure 17). Similarly, 1 µM MG-132 did partially alleviate cytokinin-

induced root inhibition (Dufek, 2016). In theory, that could be explained by a higher turn-

over rate of type-B (positive) than type-A (negative) response regulators, but we have not 

been able to validate that. Next, we analyzed the early response to cytokinin in plants with 

fully inhibited proteasomes (50 µM MG-132, 120 min). We found that proteasome inhibition 

interfered with the cytokinin response in at least 60 % of cytokinin response proteins (Dufek, 

2016). 
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Figure 17. Proteasome inhibition and cytokinin signaling interplay in root elongation 

(Adapted from Luklová, 2015).  

 

4.3.2 Modifications of DELLA protein RGA 

DELLA proteins are plant-specific transcriptional regulators acting as signaling hubs and 

mediating transcriptional control. We have proved that besides the canonical pathway via 

the GID receptor, DELLA can be targeted for degradation by an alternative gibberellin-

independent pathway via an E3 ubiquitin ligase COP1 (Blanco-Touriñán et al., 2020). 

However, the exact position of the ubiquitination has not been elucidated. We prepared the 

recombinant RGA protein in E. coli and compared its tryptic digest with that of native RGA 

captured by immunoaffinity chromatography from transgenic seedlings harboring GFP-

RGA under the native promoter (Figure 18A-C). Next, we searched for the candidate proteins 

that were significantly more abundant in the digest of recombinant RGA (missing PTMs) in 

a proteome fraction enriched by TUBE (Tandem Ubiquitin Binding Entities). The most 

promising candidate was the peptide SSEMAEVALK, which is localized next to the 

consensus DELLA sequence and the predicted fragmentation products of its ubiquitinated 

form were found in the TUBE-enriched fraction (Figure 18D).   
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Figure 18. Detection of putative PTMs in the DELLA family protein RGA. (A) The 

overview of recombinant production of RGA and (B) sequence coverage of the obtained 

tryptic peptides; (C)  Comparison of relative peptide abundances between recombinant 

standard and native RGA  (Adapted from Breineková, 2016); (D) The position of putative 

ubiquitination site (red) and DELLA sequence (green). The 3D model was constructed with 

Phyre 2 (Kelley et al., 2015). 
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4.4 Cytokinin and abiotic stress response in plants 

 

Figure 19. Cytokinin at the crossroads of abiotic stress signalling pathways (Pavlů et al., 

2018; Included Publication 3). 

  

Cytokinin is a multifaceted plant hormone that plays major roles in plant interaction with 

abiotic stimuli. We have summarized these avenues of cytokinin signaling in a recent review 

(Pavlů et al., 2018, Included Publication 3) and contributed to its elucidation with our own 

research. Besides the cytokinin role in the early response to temperature shock and 

thermomorphogenesis (Chapter 4.2), we have analyzed its effect in Arabidopsis response to 

different abiotic factors, including drought (Prerostova et al., 2018), cold (Prerostova et al., 

2021) and light (Novák et al., 2015).  

 



Analysis of signaling and phytohormone responsive proteins  

 

38 

4.4.1 Barley root proteome in response to cytokinin and abiotic stimuli 

We found that barley seedling root is an excellent model for proteomics analysis of 

cytokinin's role in early plant development. Three-day-old seedlings were treated with 1 µM 

trans-zeatin for 24 h. The consecutive proteomics analysis revealed a clear separation 

between cytokinin- and mock-treated samples (Figure 20A). In total, we identified 178 

differentially abundant cytokinin-responsive proteins, representing more than 12% of the 

estimated total root proteome (Berka et al., 2020b; Included Publication 7). The list of 

cytokinin-responsive proteins indicated the expected crosstalk with abiotic stress perception, 

including response to salinity, temperature, and reactive oxygen species (Figure 20B). 

Furthermore, about one-third of the cytokinin-repressed proteins was associated with a stress 

response, indicating a putative connection between cytokinin-induced alleviation or 

attenuation of stress. 

 

Figure 20. Barley root proteome in response to cytokinin. (A) Proteome profile separation 

of samples treated with 1 µM trans-zeatin for 24 h; (B) Interactions and functional clusters 

of cytokinin-responsive proteins highlighted by STRING (Szklarczyk et al., 2019). The 

selected highlighted categories represent the response to abiotic stimuli (Berka et al., 2020b; 

Included Publication 7). 

 

Next, we designed a set of experiments to explore this putative crosstalk. Sets of 10 

germinated seedlings were exposed to abiotic stress. The temperature stress was stimulated 

by exposure to 30°C or 4°C temperature for 2 h, followed by a 22 h recovery period at 20°C, 

salinity response by medium supplemented with 80 mM NaCl (final concentration), and 
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drought by transfer to a dry Magenta box. We analyzed root proteomes and found 308 stress-

responsive proteins. The overlap between abiotic stress and cytokinin response was high. 

Only 76 cytokinin-responsive proteins were not considered differentially abundant in 

response to any of the abiotic stimuli (Figure 21A). In total, out of 178 cytokinin-responsive 

proteins, 81 were found in the set of temperature-stress-responsive proteins and most shared 

a similar response between temperature stress and cytokinin treatment. Furthermore, 

abundances of 48 cytokinin-responsive root proteins were found with a similar response 

under salinity stress or water deprivation. The proteome of cytokinin-treated roots was 

clearly separated from abiotic stress in the ICA (Figure 21B). However, the observed 

similarities between abiotic stimuli and cytokinin lead us to the speculation that this priming 

could be responsible for an enhanced resilience found in plants with a modulated cytokinin 

pool (e.g., Přerostová et al., 2018).  

 

Figure 21. Response to abiotic stress and cytokinin. (A) Venn diagram summarizing all 

identified differentially abundant proteins in response to cytokinin or abiotic stimuli; (B) 

Clusters of treatments obtained from independent component analysis of protein profiles. 

Dashed circles represent statistically significant separation (Kruskal-Wallis test, p < 0.05). 

Adapted from Included Publication 7. 

 

Finally, we validated the expected changes in the reactive oxygen species metabolism. We 

found more than 90 enzymes of reactive oxygen species metabolism in our dataset, and at 

least 11 were significantly differentially abundant in response to cytokinin, including all 

detected catalase isoforms. The measurement of aqueous hydrogen peroxide showed that the 
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cytokinin treatment significantly reduced hydrogen peroxide content in barley roots by more 

than 25% (Figure 22A), and histochemical staining revealed that the reduction in hydrogen 

peroxide and superoxide radicals in the root tips was even higher (Figure 22B-E). 

 

 

Figure 22. Cytokinin impact on the reactive oxygen species production. The estimated mean 

content of hydrogen peroxide in barley roots determined by (A) PeroxiDetect Kit and (B) 

3,3’-diaminobenzidine (DAB) staining; (C) Cytokinin impact on superoxide radical 

production as estimated by histochemical staining with nitroblue tetrazolium (NBT); 

Representative images of cytokinin- and mock-treated roots stained with DAB (D) and NBT 

(E). Presented data are means and standard deviation of at least three biological replicates; 

Statistically significant differences (Student’s t-test) are indicated (Berka et al., 2020b; 

Included Publication 7). 

4.4.2 Arabidopsis response to Inhibitor of Cytokinin Degradation INCYDE 

The analysis of barley cytokinin response proteins (4.4.1) demonstrated the intensive 

crosstalk between cytokinin and abiotic stimuli. Indeed, modulations in cytokinin 

metabolism and signaling have been successfully used for elevating plant tolerance to abiotic 

stressors (Iqbal et al., 2006; Merewitz et al., 2012; Reguera et al., 2013). The cytokinin 

synthesis driven by stress-induced or senescence-activated promoters is a useful tool, but the 

present-day anti-GMO regulations limit its application. However, plant cytokinin levels can 
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be modulated by the application of exogenous hormones, and several studies have found a 

positive effect of cytokinin treatment on crop production (e.g., Iqbal et al., 2006; Kariali and 

Mohapatra, 2007). Alternatively, a pharmacological treatment can inhibit cytokinin 

dehydrogenase (CKX), the main enzyme that catalyzes the inactivation by irreversible 

degradation of cytokinins. INCYDE [2-chloro-6-(3-methoxyphenyl)aminopurine] is one of 

the compounds with a high affinity for the CKX enzyme, and its application reportedly 

improved plant resistance to diverse abiotic stresses, including salinity, heat stress recovery, 

and heavy metal toxicity (Gemrotová et al., 2013; Aremu et al., 2014; Prerostova et al., 

2020). It is believed that this positive effect on plant resilience is predominantly the result of 

cytokinin accumulation, but the exact molecular mechanisms are far from being understood. 

We analyzed the impact of INCYDE treatment on the model plant Arabidopsis thaliana and 

compared its effect to that of a major active cytokinin base trans-zeatin (Berková et al., 2020; 

Included Publication 8). 

 

We did not find any striking differences in root growth inhibition assays, but the analysis of 

the cytokinin signaling reporter revealed that the growth of seedlings in the presence of 

INCYDE led to a higher increase in the ARR5 promoter activity in cotyledons (100–500 nM) 

but a lower cytokinin signaling in the roots (10–100 nM) (Figure 23A-B). CKX is encoded 

by seven genes with different substrate specificity, spatial and temporal expressions, and 

subcellular targeting into the cytosol (CKX7), vacuole (CKX1, CKX3) and endoplasmic 

reticulum or apoplast (CKX2, CKX4-6). The observed cytokinin signaling response was 

similar to the expected profiles of apoplastic isoforms CKX4 and CKX5. The apoplastic 

CKX enzymes found in Arabidopsis act mainly on cytokinin free bases and ribosides 

(Frebort et al., 2011), and these are also the root-to-shoot long-distance signaling forms of 

cytokinin. It is thus possible that at a given developmental stage, the majority of the INCYDE 

effect is due to the interference with the transport of active cytokinin in plants. 

 

To provide an insight into the molecular mechanisms behind the observed contrasting 

response, we analyzed the proteomes of seven-day-old seedlings treated for 24 h with 500 

nM trans-zeatin, INCYDE, or dimethylsulphoxide (mock). In total, 3,273 Arabidopsis 

proteins were identified with reliable quantitative data for more than 2,100 of these. As 
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illustrated in Figure 23C, a statistically significant (p < 0.05) separation between trans-

zeatin, INCYDE and mock-treated samples was apparent. A detailed analysis revealed 89 

and 99 trans-zeatin and INCYDE early-response proteins compared to mock-treatment, 

respectively, and 69 proteins that showed statistically significant and reproducible 

differences between INCYDE- and zeatin-treated samples (Figure 23D-E). Early INCYDE 

response proteins encompassed diverse processes of both primary and secondary 

metabolism. The comparison with zeatin-responsive proteins showed only 48 shared 

proteins, but all with a similar responsiveness. Significantly accumulated proteins included 

those required for chloroplast biogenesis and development, enzymes involved in cell wall 

formation, chloroplastic and cytosolic isoforms of glutamine synthetase, and an extracellular 

protein with a putative role in circadian rhythm GER3. Incidentally, our previous work 

demonstrated an intensive modulation of Arabidopsis proteome diurnal rhythmicity in 

response to trans-zeatin (Luklová, 2018). 

 

Next, we evaluated a dose-dependent response after 168 h. Seven-day-old seedlings 

cultivated on textile meshes were transferred onto new medium supplemented with  

10-1,000 nM INCYDE, and after seven days, shoots were collected for proteome analyses. 

We found 517 INCYDE responsive proteins, representing an estimated 29% of the total 

protein extract. A detailed comparison of differentially abundant proteins confirmed the 

expected overlap between the INCYDE treatments. This set of 167 proteins included 

proteins involved in RNA metabolism, chromatin remodeling, proteosynthesis, ribosome 

biogenesis, tRNA metabolism, or protein folding. Interestingly, the strongest response was 

present at 100 nM INCYDE treatment (230 unique INCYDE-responsive proteins), and the 

GO enrichment revealed that this response elicited the highest similarity to the annotated 

response to cytokinin. We also searched for proteins that abundance would correlate with 

the INCYDE dosage and identified 25 and 11 statistically significant positive and negative 

correlations, respectively. These INCYDE-responsive proteins are involved in signaling, 

primary and secondary metabolism, including γ-aminobutyric acid biosynthesis, 

glucosinolate degradation, and processes of chloroplast biogenesis and development 

(Berková et al., 2020; Included Publication 8). 
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Figure 23. Differences between trans-zeatin (tZ) response and effects of cytokinin 

dehydrogenase inhibitor INCYDE. (A) Comparison of normalized ARR5 promoter activity 

visualized by histochemical staining and (B) representative images of seven-day-old 

ARR5::GUS reporter line cultivated on the medium supplemented with trans-zeatin. Results 

represent means and standard error, different letters indicate significant differences 

(Kruskal-Wallis, n>15, p < 0.05); (C) Proteome profile separation after 24 h incubation with 

500 nM INCYDE or tZ. Principal component analysis based on quantitative data of 178 

differentially abundant proteins; (D) Differentially abundant proteins accumulated (blue) 

and decreased (orange) compared to mock (tZ—tZ vs. mock; INCYDE—INCYDE vs. 

mock) or tZ-treated samples (INCYDE:tZ); (E) Overlap between tZ and INCYDE-

responsive proteins (Adapted from Berková et al., 2020; Included Publication 8). 
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The ribosome composition reflects external stimuli and may have a significant impact on 

plant responses. Our previous analysis of plants with modulated active cytokinin levels 

revealed a putative cytokinin effect on ribosome composition (Černý et al., 2013a), and a 

similar effect was found in response to INCYDE. In total, the abundances of 34 ribosomal 

proteins were altered in the shoot proteome, representing 29 different ribosomal subunits 

(Figure 24). However, the most prominent INCYDE-responsive paralogs formed only 50% 

of the detected ribosomal protein isoforms. This indicates that the total ribosome population 

was not completely altered, or that the alteration was cell-specific, and that the localized 

distribution was lost in the total shoot protein extracts. 

  

Figure 24. A graphical representation of all identified ribosomal subunits in shoots of plants 

exposed to INCYDE for 168 h. Blue and red gradients indicate subunits with one or more 

INCYDE-responsive paralogs. The contribution of the paralog to the subunit composition 

[%] is indicated; white—not detected; grey—no significant difference compared to the 

mock-treated plants (Berková et al., 2020; Included Publication 8). 

 

Finally, we searched our proteomics data for changes that could shed light on the reported 

INCYDE-promoted growth under suboptimal conditions. We found that INCYDE 

attenuated abscisic acid signaling. That was reflected in a depletion of transcription factor 

NFYC4, accumulation of ABI1, and depletion of at least 21 additional stress-responsive 

proteins. The comparison of INCYDE response proteins with our database of previously 
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identified phytohormone-responsive proteins (Černý et al., 2016) found that the INCYDE 

response was predominantly opposite to that of jasmonic acid or abscisic acid treatment. 

Thus, we believe that the INCYDE-repressed degradation of cytokinin inhibits stress 

perception in plants. 
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5. Proteomics of biotic interactions 

5.1 Biotic interactions 

The endosymbiotic theory postulates that mitochondria and plastids were once separate 

prokaryotic microbes. Consequently, biotic interactions formed the plant cell and have been 

shaping plants ever since. In their natural environment, plants have to interact and cope with 

many different organisms simultaneously at any time. The complex nature of biotic 

interactions is far beyond the scope of this work, and only the key points relevant to the 

described experiments will be summarized. Some of these interactions are beneficial and 

provide an advantage. For instance, approximately 80% of biological nitrogen fixation is 

produced in symbiotic associations with bacteria. Similarly, most terrestrial plants are 

supported by arbuscular mycorrhiza, which is formed by an interaction with obligate 

symbiotic fungi (Schüßler et al., 2007). Mycorrhizae play an essential role in plant growth 

and disease protection. Fungi supply plants with inorganic nutrients and water in exchange 

of carbohydrates. Conversely, this mutualism may occur even at an immeasurably low profit 

for fungi. That is characteristic for orchidaceous mycorrhizae. Orchids start their lives as 

myco-heterotrophs and depend on their fungal benefactors. Some orchids are 

nonphotosynthetic and are full myco-heterotrophs throughout their life. Yet even those that 

become photosynthetic at maturity retain their mycorrhizal fungi for protection and nutrient 

recovery (Bidartondo, 2005).  

 

Plants interact indirectly with their neighbors by releasing phytochemical compounds into 

the environment. This long-distance communication called allelopathy is usually (but not 

exclusively) facilitated by volatile compounds and has beneficial or detrimental effects on 

target organisms (Cheng and Cheng, 2015). Allelopathy might be a part of resource 

competition between organisms, but it also contributes to the coexistence of closely related 

species (Zhang et al., 2021). Besides the direct effect on competitors in a plant's proximity, 

plants may produce volatiles conveying information about their identity to attract pollinators 

or enemies of attacking herbivores (Cusumano et al., 2015). 
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Adverse biotic interactions have shaped plant evolution and facilitated the development of a 

unique plant immune system. The attack by deleterious organisms activates the plant defense 

response, and the outcome can be broadly characterized as an incompatible and compatible 

interaction, representing successful and failed defense, respectively (Glazebrook, 2005). 

However, this does not fully reflect plants’ resistance. A resistant host will not show 

infection symptoms but may still mediate pathogen replication if the host-pathogen 

interaction is compatible and the plant does not respond to the pathogen’s presence. There 

are several distinct barriers protecting plants against pathogens and pests. Some mechanisms 

are constitutive and form the innate immunity. For instance, many plants produce a range of 

secondary metabolites with antimicrobial properties and toxic proteins, including alkaloids, 

glucosinolates, lectins, and protein inhibitors (Heldt and Piechulla, 2021). The next levels of 

induced defense are formed by pathogen-associated molecular patterns-triggered immunity, 

effector-triggered immunity, and RNA interference. Examples of pathogen molecules that 

are recognized by plant receptors are fungal chitin fragments, lipopolysaccharides, 

peptidoglycans, and bacterial flagellin (Newman et al., 2013). Binding of these molecules to 

the plasma membrane receptors triggers transcriptional reprogramming via the activation of 

calcium‐dependent protein kinases and mitogen‐activated protein kinase cascades 

(Buchanan et al., 2015). The resulting effect includes reactive oxygen species burst at the 

cell surface, strengthening of the cell wall, production of phytoalexins, jasmonates, or 

secretion of chitinases. Pathogens have evolved mechanisms to counter this process by 

delivering effectors into plant cells, which, in turn, may activate effector-triggered immunity, 

the second level of induced defense (Han, 2019). This recognition is facilitated by disease 

resistance proteins and may culminate in a hypersensitive response and programmed cell 

death containing the pathogen at the site of infection (Mukhtar et al., 2016). It also elicits 

systemic signaling and induces the accumulation of salicylic acid in uninfected tissues, 

leading to the production of so-called pathogenesis‐related proteins with antimicrobial 

activity.  

Proteins form an indispensable part of the plant defense system, those present in plant cells, 

as well as those that are secreted into the apoplast or even the environment. The conventional 

plant protein secretion pathway requires N-terminally located transit peptides that target 

proteins via the endoplasmic reticulum and the Golgi apparatus to the plasma membrane 
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(Wang et al., 2017).  Interestingly, despite the presence of cell walls, plants may secret 

proteins via alternative unconventional protein secretory pathways. These Leaderless 

Secreted Proteins that are devoid of the consensus N-terminal peptide sequence may be 

secreted by at least four distinct mechanisms, namely, a pore-mediated translocation across 

the plasma membrane, an ABC transporter mediated secretion, an 

autophagosome/endosome-based secretion, and a Golgi bypass (Padmanabhan and 

Manjithaya, 2020). The exact extent of these alternative pathways in plants has not yet been 

fully elucidated. However, it has been confirmed that the extracellular vesicles in the plant 

secretome contribute to the plant defense system (Regente et al., 2017). 

5.2 Peptide-based identification of microorganisms in plants 

The detection of microbes in general is important for our understanding of biomes and it is 

also an essential step in disease control. Traditional approaches for microbial detection and 

identification employ microbial cultivation. However, that approach was not reliable and has 

been replaced by molecular methods based on antibody detection and PCR. The sensitivity 

of PCR is still beyond the reach of proteomics analyses, but unlike enzyme-linked 

immunosorbent assays, the present-day MS proteomics techniques have shown high 

sensitivity as well as specificity that can be utilized for the identification of microorganisms 

(e.g., Strejcek et al., 2018; Hayoun et al., 2020; Included Publication 9). Nonetheless, the 

detection of microbes within the proteome of its host is more complicated. A major obstacle 

for high-throughput shotgun LC-MS proteomic approach is the presence of evolutionary 

conserved sequences. Some of these could be a result of plant-microbe interaction and 

horizontal gene transfer, but the most abundant peptides originate from constituents of 

primary metabolism, including ribosomal proteins, histones, and enzymes of energetic 

metabolism. As illustrated in Figure 25, the theoretical overlap in tryptic peptides is not that 

significant. However, the shared peptides have a higher abundance and the correct 

assignment of the species of origin may be a challenge and should not be underestimated in 

non-model species with limited genome annotations.   
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Figure 25. Evolutionarily conserved peptide sequences in three model genomes digested by 

trypsin in silico. Numbers corresponding to low-stringency (maximum three miscleavages, 

6–30 amino acids per peptide) and high-stringency criteria peptides (maximum one 

miscleavage, 8–25 amino acids per peptide) are represented in plain and bold font, 

respectively (Adapted from Berka et al., 2020a; Included Publication 9). 

 

We have encountered this issue in our own experiments with phytopathogenic oomycetes, 

namely, Phytophthora infestans. To elucidate the source of putative P. infestans proteins, 

we analyzed the time-course response of proteomes of infected leaves. We inoculated 

detached leaves of Solanum tuberosum (cv. Kerkovske rohlicky) with a mixture of P. 

infestans isolates, sampled 72 and 96 h after the inoculation, and analyzed proteome profiles 

(Figure 26A). The set of 146 P. infestans proteins (containing at least two detected unique 

peptides and not identified in the mock-treated samples) were analyzed in detail. Functional 

enrichment by STRING (Figure 26B) showed that these were enzymes belonging to amino 

acid metabolism, ribosomal proteins, ROS metabolism enzymes, CAZymes, and 

components of the proteosynthetic machinery and proteasome. Surprisingly, only six 

detected proteins were annotated as secreted effectors. 
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Figure 26. Detection of P. infestans in inoculated detached leaves of Solanum tuberosum. 

(A) Representative images of plant material and separation of proteome profiles of S. 

tuberosum leaf 72 and 96 h after inoculating with P. infestans. Different letters indicate 

significant differences (Kruskal–Wallis test, p < 0.05, n=5); (B) Interactions and functional 

clusters of high-confidence P. infestans proteins highlighted by STRING. Color-coding of 

proteins is denoted by the functional designation given by KEGG pathway enrichment, only 

the nine most significant categories are highlighted (Adapted from Berka et al., 2020a; 

Included Publication 9). 
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Finally, we performed qPCR and compared the estimated protein abundances with the P. 

infestans DNA content.  As illustrated in Figure 27, more than 300 out of 802 quantified 

proteins showed a strong correlation with the P. infestans DNA amount. P. infestans employs 

a biphasic infection strategy and minimal symptoms are exhibited by the plant at the initial 

biotrophic phase (e.g., Zuluaga et al., 2016). Nevertheless, we were able to identify more 

than 90 of these putative P. infestans marker peptides in samples collected in our field 

experiments, providing direct evidence that this technique is a suitable method for P. 

infestans monitoring. It is not likely that this relatively expensive method would become a 

method of choice for Phytophthora control, but it provides a more exact and PCR-

independent estimation of the disease progress. 

 

Figure 27. Identification of putative P. infestans marker peptides. Correlations between P. 

infestans DNA and protein relative abundances. Numbers indicate the size of the protein 

profile cluster. The mean profile and polynomial regression are represented by black and red 

curves, respectively (Adapted from Berka et al., 2020a; Included Publication 9). 

 

5.3 Putative role of HSP70 in Plasmodiophora brassicae infection 

Plasmodiophora brassicae Wor. is a root-infecting protist pathogen in the eukaryotic 

kingdom that causes an economically important clubroot disease of plants in the 

Brassicaceae family. The disease is characterized by enlargement and uncontrolled cell 

division leading to the development of galls on infected roots. Club-root disease has become 

an increasingly serious economic threat for agriculture with reported yield losses up to 91% 

(Hwang et al., 2012).  Furthermore, galls contain  long‐lived resting spores that are released 
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into the soil and can persist for many years and serve as an inoculum for the infection of 

subsequent crops (Howard et al., 2010).  

 

We analyzed Plasmodiophora proteome in the root gall of Arabidopsis and found that its 

most abundant protein was an orthologue of Phytophthora infestans HSP70 (Malych and 

Berka, 2019). The role of HSPs has been documented in malaria disease caused by 

Plasmodium spp. (Przyborski et al., 2015), and several studies have highlighted the role of 

HSPs in plant-biotic interactions. For instance, it has been demonstrated that HSP90 and 

HSP70 are important for plant defense signal transduction pathways (Kanzaki et al., 2003) 

and that a mutation in HSP genes may increase susceptibility to pathogens (Jacob et al., 

2017). Furthermore, pathogens like Pseudomonas syringae may directly hijack the plant’s 

HSPs and recruit these to facilitate the pathogen’s virulence (Jelenska et al., 2010).  

 

To confirm the role of HSP in Plasmodiophora infection, we analyzed different stages of 

clubroot development. In total, 5,287 proteins were identified, including 3,704 Arabidopsis 

and 1,583 P. brassicae proteins, respectively (Figure 28; Kopecká, 2020). Results showed a 

clear proteome profile separation of different infection stages (Figure 28A), and a detailed 

analysis revealed quantitative data for 21 Plasmodiophora HSPs (Figure 28B). The 

previously identified CEO96729 was again one of the most abundant Plasmodiophora 

proteins and represented on average 24% of all Plasmodiophora HSPs. This protein also 

showed the highest correlation with the infection progress (Pearson’s correlation coefficient 

r>0.9) and its amount was proportional to the estimated Plasmodiophora protein content in 

Arabidopsis tissue. Interestingly, mRNA analysis showed that the mRNA of its Arabidopsis 

orthologue HSP70-14 was also significantly upregulated (Kopecká, 2020). However, the 

upregulation was not reflected in the HSP70-14 protein content. A similar decrease was 

found for all 18 detected Arabidopsis HSP70s, and the abundance of HSP70s showed a 

strong correlation with the estimated Arabidopsis protein content, which represented only 

56±2% of the root gall proteome in the fifth stage of its development.  

 

HSPs are proteins with a role in the unconventional protein secretion as a part of the 

mechanism via chaperone-mediated autophagy (Padmanabhan and Manjithaya, 2020) as 
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well as the proteins that are being secreted. It has been shown that secreted human HSPs 

participate in the immune response and facilitate stress signal propagation and priming. It is 

tempting to speculate that the most abundant Plasmodiophora HSP70 has a direct role in 

preventing the host’s immune response and that it interferes with the host's HSPs. However, 

the existence of this mechanism in plants has not yet been reported.   

 

Figure 28. Relative protein abundances of Plasmodiophora HSP family proteins during the 

infection. (A) PCA separation of root gall proteomes and (B) a heatmap representation of an 

average HSP profile in up to five biological replicates. Relative protein abundances in the 

first stage of infection and median-normalized abundances of individual proteins are 

represented by gray and red heatmaps, respectively (Kopecká, 2020). 

5.3 Proteomics offers insight to the mechanism behind Pisum sativum L. 

response to Pea seed-borne mosaic virus (PSbMV) 

Pea seed-borne mosaic virus (PSbMV; family Potyviridae) is a non-persistent seed-borne 

and aphid-borne pathogen that has been dispersed globally by seed stock exchange. Its host 

range is naturally limited to leguminous plants and includes at least 47 plant species 

belonging to 12 families. The symptoms are often difficult to see, and the effect on crop 

yield may vary. The effect is most serious when seeds with infection are sown, and aphid 

population growth is encouraged by favorable weather (Konečná et al., 2014; Makkouk et 

al., 2014).  
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The eukaryotic translation initiation factor confers resistance to PSbMV (Smýkal et al., 

2010), implying that translation and proteome dynamics play a role in resistance. In our 

study, we inoculated Pisum sativum plants of two contrasting cultivars, namely, the resistant 

cultivar B99 (viral replication is not detectable) and the susceptible cultivar Raman (severe 

symptoms of viral infection). We analyzed proteome profiles at two different time points (10 

and 20 days post-inoculation) that best reflect a plant's struggle before the onset of severe 

symptoms in the sensitive cultivar (Figure 29). 

 

Figure 29. Leaves of PSbMV-sensitive and resistant pea cultivars B99 and Raman collected 

10 and 20 days post inoculation (Adapted from Cerna et al., 2017; Included Publication 2). 

 

First, we determined virus presence in all PSbMV-inoculated plants. Only four viral proteins 

produced by proteolytic processing of two polyproteins encoded by potyviral RNA were 

detectable in our samples, namely, Helper component proteinase, cytoplasmic inclusion 

protein, viral genome-linked protein, and capsid protein. These four proteins were detected 

only in the sensitive PSbMV-inoculated Raman cultivar, and similar results were confirmed 

by RT-qPCR. 
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The analysis of Pisum sativum leaf proteome revealed over 2,300 proteins, and 116 proteins 

demonstrated statistically significant and reproducible changes over all experimental 

replicates. The identified proteins represented a broad range of primary and secondary 

metabolism, including enzymes of amino acid biosynthesis, protein metabolism, 

photosynthetic proteins, CAZymes, lipid metabolism, proteins of signaling, redox 

homeostasis, and stress response (Figure 30). Surprisingly, a majority of these PSbMV-

responsive proteins were found to be differentially abundant in both cultivars, when 

compared to the mock inoculation samples. That implies that a seemingly unaffected 

resistant plant, with no detectable levels of PSbMV, was actively suppressing viral 

replication. 

 

Only 13 and 23 differentially abundant proteins were specific for B99 and Raman, 

respectively. Among these, there was an evident increase in proteins participating in lipid 

and amino acid metabolism in the resistant and susceptible cultivars, respectively. One of 

the B99-specific responsive proteins is Phospholipase D, an important member of signaling 

cascades that participates in many physiological processes, including membrane trafficking, 

cytoskeletal reorganization, and wounding. Our dataset also contained a non-specific lipid 

transfer protein with lipase activity, patatin, and five homologs of enzymes known to 

participate in lipid metabolism. The levels of all of these proteins increased in the resistant 

cultivar following PSbMV inoculation, but the same response was delayed or even absent in 

the susceptible cultivar. This decrease in lipid metabolism was also apparent in the fatty acid 

pool, which was significantly lower in infected Raman plants.  

 

Similar to our analysis of Plasmodiophora disease, an interesting candidate and putative 

resistance/susceptibility determinant could be the protein HSP70. Two HSP70s were 

differentially abundant at 20 days post-inoculation in our dataset, but only one was B99 

specific. Its Arabidopsis ortholog, HSP70-3 (>91.5% identity), interacts with the RNA-

dependent RNA polymerase of the Turnip mosaic virus within virus-induced membrane 

vesicles and is believed to have an important function in viral replication (Dufresne et al., 

2008). 
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Figure 30. Processes revealed by proteomics analysis of PSbMV-sensitive and resistant pea 

cultivars B99 and Raman in response to PSbMV inoculation. The referenced tables are part 

of the Included Publication 2 (Cerna et al., 2017; Included Publication 2).  
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5.4 Balancing positives and negatives - Acremonium alternatum story 

The outcome of the interaction between a host plant and fungus is based on a fine-tuned 

balance and shares many common attributes with plant interactions with pathogens (Kogel 

et al., 2006). For instance, Acremonium alternatum may suppress clubroot disease in 

Arabidopsis (Jäschke et al., 2010) and promote Arabidopsis growth (Figure 31; Malých, 

2020). However, we found that its positive effect is lost on a medium supplemented with 1% 

sucrose (Figure 31A-B).  

 

Figure 31. The growth-promoting effect of Acremonium is lost in the medium supplemented 

with sucrose. (A) Total leaf area (n=60) and (B) representative leaf series of 14-day-old 

Arabidopsis plantlets seven days post-inoculation. Data represent means and standard 

deviation; Different letters indicate significant differences (ANOVA, p<0.05); Asterisks 

indicate true leaves present at the inoculation stage (Adapted from Malých, 2020).  
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Figure 32. Acremonium response is tissue-specific. PCA separation of (A) shoot and (B) 

root proteomes of 14-day-old Arabidopsis plantlets inoculated with Acremonium. Light blue 

- control; light green - 1% sucrose; gray - Acremonium; blue - Acremonium and 1% sucrose 

(Adapted from Malých, 2020). 

 

We analyzed the root and shoot tissue proteomes of these plants and identified over 4,600 

proteins. As illustrated in Figure 32A-B, the proteomes of inoculated plants grown on the 

medium supplemented with sucrose were clearly separated (PC1), which was in line with 

the observed phenotype and metabolome (Malých, 2020). The detailed pairwise comparison 

of inoculated plants grown in the presence and absence of sucrose revealed more than 40 

putative markers of the endophyte-pathogen shift. These included the accumulation of stress-

response proteins, namely, flavonoid biosynthetic enzymes, enzymes involved in jasmonic 

acid biosynthesis, mitogen-activated protein kinase, and caleosin family protein involved in 

biotic stress. The protein of interest is also TOR1 which was significantly less abundant in 

inoculated plants on sucrose medium. This protein regulates the direction of organ growth 

and its decrease could correspond to the observed growth inhibition.
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6. Conclusions and future perspectives 

Plant proteome analyses are essential for the understanding of biochemical pathways 

involved in plant signaling and adaptation processes, including those affected by biotic and 

abiotic stressors. In the last decade, proteome fractionation, enrichment and mass 

spectrometry-based analysis have undergone rapid evolution. It has been demonstrated that 

an extensive fractionation can identify most of the expected Arabidopsis proteins. 

Furthermore, proteomics extraction methods have been optimized to facilitate a multi-omics 

analysis from a single sample (Valledor et al., 2014; Salem et al., 2020). New methods have 

also provided deeper insights into the complexity of protein complexes and protein-protein 

interactions (Mair et al., 2019; Van Leene et al., 2019). However, proteomics, like all omics 

analyses, is prone to errors and misinterpretation. By extending the sensitivity and increasing 

the amount of data that these analyses are rapidly generating, manual validation of all 

identified molecules has become obsolete and for large-scale experiments mostly 

impossible. Besides the data processing, the experimental design is in most cases restrained 

by budget and does not allow a sufficient number of biological replicates. It has been 

demonstrated that an RNAseq experiment may require more than 20 biological replicates to 

reach at least 85% of differentially expressed genes (Schurch et al., 2016), and it is unlikely 

that a proteomics analysis would cope any better. That undersampling is usually 

compensated by increasing the ratio threshold for observed significant changes, yet this 

could be a mistake for large or highly abundant proteins.  

 

False positives may originate not only from the experimental design and analysis but also 

from overinterpretation. For example, plant responses to phytohormone cytokinin have been 

extensively studied in Arabidopsis at the transcriptional level, and the number of putative 

cytokinin-regulated genes identified in the last 15 years has reached more than 10,000. That 

is clearly a considerable overestimate and a problem in distinguishing between signaling-

related events and any response that originates solely as a consequence of altered growth or 

perhaps even due to experimental error. Similarly, our comparison of phytohormone-

responsive proteomes revealed that the proteins found in the largest number of 
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phytohormone-response proteome analyses are an ATP synthase subunit and ribulose 

bisphosphate carboxylase (Černý et al., 2016; Included Publication 1). These proteins are 

highly abundant in plant total protein extracts, and the change may reflect an altered 

turnover. Nevertheless, it is also possible that their presence indicates a potential bias in the 

proteomics data. It is thus crucial to validate the results of any proteomics analysis. A 

functional validation with a corresponding mutant phenotype is the best, yet usually also the 

least convenient. Especially in the case of non-model organisms, the mutants are not readily 

available, and validation is often impossible. In most of our experiments, the proteomics 

analyses have been supported and complemented by enzymatic assays, metabolomics, 

hormonomics, or transcriptomics data. That helped us in confirming at least a portion of the 

observed changes on the protein level, but the majority of our interpretations have been 

deduced from indirect evidence based on previously observed effects and available 

annotations of orthologous genes/proteins in databases.  

 

The dependency on genome sequencing and annotation is the most pressing dire problem for 

present-day proteomics. Ambitious projects like 10KP (https://db.cngb.org/10kp/) aim to 

fully sequence and assemble several thousands of plant genomes by 2022. That will be a 

significant improvement, yet still a long reach with an estimated 500,000 species of land 

plants (Corlett, 2016). Furthermore, functional annotations are missing even for the best-

characterized plant model Arabidopsis. The database UniProt lists only 16,036 reviewed 

Arabidopsis proteins, representing less than 50% of the predicted protein-coding transcripts.   

The second obstacle is spatial and temporal resolution. That is a well-recognized issue in all 

omics analyses, and Nature Methods crowned the spatially resolved transcriptomics method 

of the year 2020 (Marx, 2021). Finally, accumulated evidence has shown that many proteins 

form multiprotein complexes and assemblies critical for their function. That presents new 

challenges but could be critical for our understanding of the molecular mechanisms of the 

plant cell (McWhite et al., 2020).   

 

History teaches us that our well-being depends critically on plants. Crop failure and famine 

have shaped the history of mankind around the world. Early civilizations in Mesopotamia 

and Peru failed due to human-induced salinization and crop production losses (Shahid et al., 
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2018). In our past, as well as in our present, famines have ignited countless wars and 

migrations (e.g., Feng et al., 2010; Lee, 2018). It is the duty of science to elucidate the 

mechanisms of plant stress response and adaptation to improve agriculture, and proteomics 

analysis has the potential to become the best approach for this challenge.
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ANOVA Analysis of variance 

ARR  Arabidopsis response regulator 

C18  Octadecylsilane reversed phase chromatography 

CAZymes Carbohydrate-active enzymes  

CKX  Cytokinin dehydrogenase  

DAB  3,3’-diaminobenzidine  

GMO  Genetically modified organism 

HSP  heat-shock proteins  

ICA  Independent component analysis  

IEF  Isoelectric focusing 

INCYDE  2-chloro-6-(3-methoxyphenyl)aminopurine 

KMD  Kiss me deadly family 
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LC-MS  Liquid chromatography-mass spectrometry 

LEA  Late embryogenesis abundant  

MS  Mass spectrometry 

NBT  Nitroblue tetrazolium  

Off-gel  Agilent 3100 OFFGEL Fractionator 
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PCA  Principal Component Analysis 

PCD  Programmed cell death  

PCR  Polymerase chain reaction 

PEG  Polyethylene glycol  

PhyB  Phytochrome B 

PSbMV Pea seed-borne mosaic virus  

PTM  Post-translational modification, 
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