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Habilitačńı práce
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Chapter 1

Introduction

The measurement of the geometric shape of different objects is an important
task of metrology. For many years, the mechanical tactile sensors have been
established in this field. Above all, their low measurement uncertainty and
high reliability make their use the standard measuring method.

At present, the forces applied to the tips of the tactile sensors are so
negligible that it is questionable, whether they should be still called contact
measurement instruments. In addition, the mechanical tactile sensors show
an excellent lateral resolution (Schmit et al., 2007).

However, also the mechanical tactile sensors have their limits. Their
major disadvantage is the relatively long measurement time because they
measure the shape of surface point by point. For a fast and permanent mea-
surement, the mechanical scanning is not suitable. To solve this problem,
non-contact measurement methods have been developed, of which the opti-
cal are of great importance. An optical device that measures the geometric
shape of an object is called an optical 3D sensor.

Optical 3D sensors measure the geometric shape of objects by use of
light. Usually, the value of a space or angle coordinate is measured as a
function of other coordinates. The coordinate value is obtained from light
intensity values that are recorded by the detector. The resultant intensity
recorded by the detector is created by composing from individual contribu-
tions. The individual contributions come from different parts of the surface,
which usually lie close to each other. The way of composing resultant in-
tensity is mainly influenced by two factors: whether the light is coherent or
incoherent and whether the surface is optically smooth or rough.

The meaning of the terms optically smooth and optically rough surface
is explained in Chapter 2. Approximately one can say that a surface is
regarded as being optically smooth for a specific instrument when the height
variations within the resolution cell of the imaging system do not exceed
plus/minus one-eighth of the wavelength of the light used. Similarly, a
surface is regarded as being optically rough for a specific instrument when
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2 CHAPTER 1. INTRODUCTION

its height variations within the resolution cell of the imaging system exceed
plus/minus one-fourth of the wavelength of the light used (Häusler et al.,
1999).

There are various methods for optical shape measurement. Some of
them are suitable for the measurement of optically smooth surfaces, the
paradigms are classical interferometry, phase measuring deflectometry, and
confocal microscopy (Häusler, 1999; Häusler et al., 1999; Häusler and Ettl,
2011; Knauer et al., 2004). Optically rough surfaces are commonly measured
by triangulation with a multitude of implementations, among them laser
triangulation and phase measuring triangulation. Other methods suitable
for the measurement of optically rough surfaces are focus search methods
like shape from focus, point autofocus or focus variation (Häusler and Ettl,
2011; Nayar and Nakagawa, 1994). Only few methods are able to measure
optically smooth and optically rough surfaces. The paradigm is coherence-
scanning interferometry (CSI) (Dresel et al., 1992; Kino and Chim, 1990).

The value of the space or angle coordinate cannot be estimated abso-
lutely accurately. The measurement result is affected by the measurement
error. The reason why the shape of objects cannot be measured arbitrari-
ly accurately is the ubiquitous noise. Chapter 3 explains what signal and
noise are, how the measurement error is defined, and how the measurement
uncertainty is determined. Cramér-Rao inequality is introduced as a suit-
able means of calculating measurement uncertainty [A1] (Pavĺıček and Svak,
2015). In order to use Cramér-Rao inequality, we need to know the shape of
the signal and the properties of the noise [A2, A3] (Pavĺıček and Michálek,
2012a,b). The use of Cramér-Rao inequality is shown on the example of
shot noise because of its significance in the case of optically smooth surfaces
[A4] (Pavĺıček and Hýbl, 2012).

When measuring the shape of an object with an optically smooth surface,
shot noise is the dominant source of noise. The measurement uncertainty
for some model measurement methods for optically smooth surface is cal-
culated in Chapter 4 [A5] (Pavĺıček and Pech, 2016). The spectral density
quantity is introduced and its connection with the measurement uncertainty
is explained [A6] (Pavĺıček, 2014). The obtained results can also be applied
to commonly used measurement methods such as classical interferometry
and scanning microscopy [A5, A7] (Pavĺıček and Pech, 2016; Pavĺıček and
Häusler, 2014).

In the case of measurement on optically rough surfaces, different sources
of noise influence the measurement uncertainty. For example, the influence
of surface roughness is the dominant source of noise in coherence-scanning
interferometry on rough surface. Similarly, the speckle noise is the dominant
source of noise in triangulation. The measurement uncertainty of coherence-
scanning interferometry on rough surface is discussed in Chapter 5 as an
example of the measurement uncertainty on optically rough surface. The
origin of the signal and its evaluation is explained. The rough surface is
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understood as a statistical set of scattering centers [A8] (Pavĺıček and Sou-
busta, 2003). Based on statistical calculations, the measurement uncertainty
is calculated [A9] (Pavĺıček and Hýbl, 2008). The influence of spectrum
width and roughness on the shape of the interferogram is investigated [A10]
(Pavĺıček, 2008).
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Chapter 2

Optically smooth and
optically rough surface

The coordinate value is determined from one or more intensity values re-
corded by the detector. The formation of the resultant intensity on the
detector depends on whether the measured surface is optically smooth or
optically rough (Häusler et al., 1999).

To understand the terms optically smooth and rough, let us first con-
sider an imaging device that images the surface of the object in the image
plane. For simplicity, let us assume that the absolute value of lateral mag-
nification is equal to one and the point spread function has a width of ∆.
Furthermore we assume that the light is spatially and temporally coherent
and its wavelength is λ. The width of the point spread function defines the
size of the lateral resolution cell.

If the heights of the individual scattering centers of the surface that are
located within the resolution cell lie in the interval (−λ/8, λ/8], then the
phases of individual contributions lie in the interval (−π/2, π/2]. (Because
of the reflection, the height difference λ/8 corresponds to the path difference
λ/4 and thus to the phase difference π/2.) This means that the individual
phasors add up constructively as shown by Argand diagram in Fig. 2.1(a)
(Loudon, 2000). The intensity at each point of the image plane will be
the result of constructive interference, no speckle pattern appears. Such a
surface can be considered as an optically smooth surface.

If the heights located within the resolution cell exceed the interval (−λ/4,
λ/4], the phases of individual contributions fill uniformly the interval (−π, π].
This causes destructive interference between the individual phasors and a
fully developed pattern appears in the image plane. The corresponding Ar-
gand diagram is illustrated in Fig. 2.1(b). Such a surface is considered as
optically rough.

There is a transient range between optically smooth and optically rough
surface. This applies to surfaces whose heights inside the resolution cell

5



6 CHAPTER 2. OPTICALLY SMOOTH AND ROUGH SURFACE

Figure 2.1: Argand diagram. (a) Optically smooth surface. (b) Optically
rough surface.

exceed the interval (−λ/8, λ/8] and do not exceed the interval (−λ/4, λ/4]
(Häusler et al., 1999).

An important conclusion is that the property of being optically smooth
or optically rough does not only depend on the properties of the surface
itself, but also on the properties of the imaging system and the wavelength
of the light used (Häusler et al., 1999). However, the conditions under which
the surface can be considered as optically smooth or optically rough can be
determined more precisely.

2.1 Statistical properties of speckle pattern

Now, let us consider an imaging system consisting of two lenses. The
schematic of the imaging system is illustrated in Fig. 2.2. The two lenses
are positioned so that the back focal point of the first lens coincides with
the front focal point of the second lens.

Figure 2.2: Schematic of two-lens imaging system.

First-order statistical properties of the speckle pattern generated by the
two-lens imaging system are calculated in Goodman (1984). The statistical
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properties we are interested in are mean values and variances of the real and
imaginary parts of the field. However, the results presented in Goodman
(1984) are derived on the assumption that the numerical aperture of the
used lenses is low. In order not to be limited to small aperture lenses, we
derive statistical properties without limitation to small apertures (Pavĺıček,
2021).

The derivation is performed on the assumption that the illumination is
monochromatic with wavelength λ and fully polarized. The rough surface,
that is located in the front focal plane (x, y) of lens L1, is illuminated by a
plane wave. We assume that the height function h( ) describing the rough
surface has normal distribution with zero mean and standard deviation σh.
According to the definition, σh is equal to quadratic roughness Rq. A CCD
detector is placed in the rear focal plane (X,Y ) of lens L2.

The phase of light in the object plane (x, y) is equal to

ϑi(x, y) =
4π

λ
h(x, y). (2.1)

We can, without loss of generality, set the reflectivity and the incident inten-
sity equal to unity (Goodman, 1984). The field at image coordinates (X,Y )
is given by

A(X,Y ) =

∞∫
−∞

∞∫
−∞

dx dy K(X −MLx, Y −MLy) exp[iϑi(x, y)], (2.2)

where K( ) is an amplitude weighting function and ML is the lateral magni-
fication. For the imaging system shown in Fig. 2.2, it holds ML = −f2/f1.

The form of the amplitude weighting function is determined by the form
of the pupil function k(ξ, η) in the pupil plane (ξ, η) (Goodman, 2005)

K(X,Y ) =
1

λ2f1f2

∞∫
−∞

∞∫
−∞

dξ dη k(ξ, η) exp

[
−i 2π

λf2
(ξX + ηY )

]
. (2.3)

It follows from Eq. (2.3) that the amplitude weighting function K( ) is equal
to the Fourier transform of pupil function k(ξ, η) divided by factor λ2f1f2.
The pupil function of a circular aperture with radius a is given by

k(ξ, η) = circ

[
(ξ2 + η2)1/2

a

]
. (2.4)

The corresponding amplitude weighting function is equal to

K(X,Y ) =
πa2

λ2f1f2
×

2J1

[
2πa(X2 + Y 2)1/2/(λf2)

]
2πa(X2 + Y 2)1/2/(λf2)

, (2.5)
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where J1( ) is the Bessel function of the first kind and first order.

The mean values of the real and imaginary parts of the field A(X,Y )
can be calculated from Eq. (2.2)

〈A(r)〉 =

∞∫
−∞

∞∫
−∞

dx dy K(X −MLx, Y −MLy)〈cosϑi(x, y)〉, (2.6)

〈A(i)〉 =

∞∫
−∞

∞∫
−∞

dx dy K(X −MLx, Y −MLy)〈sinϑi(x, y)〉. (2.7)

It holds for the mean values 〈cosϑi(x, y)〉 = exp(−σ2/2) and 〈sinϑi(x, y)〉
= 0. The symbol σ denotes the standard deviation of the phase

σ = 4π
σh
λ
. (2.8)

Thus

〈A(r)〉 = − 1

ML
exp

(
−1

2
σ2

)
, (2.9)

〈A(i)〉 = 0. (2.10)

The variances of the real and imaginary parts of the field A(X,Y ) are
equal to

σ2
r =

exp(−σ2)

M2
L

× (2.11)

∞∫
−∞

∞∫
−∞

d∆x d∆y K(ML∆x,ML∆y){cosh[σ2C(∆x,∆y)]− 1},

σ2
i =

exp(−σ2)

M2
L

× (2.12)

∞∫
−∞

∞∫
−∞

d∆x d∆y K(ML∆x,ML∆y) sinh[σ2C(∆x,∆y)].

The symbol K( ) denotes the autocorrelation function (Goodman, 1984)

K(α, β) =

∞∫
−∞

∞∫
−∞

dα′ dβ′ K(α′, β′)K(α′ − α, β′ − β), (2.13)

C( ) is the normalized correlation function of the surface heights, ∆x = x−x′,
and ∆y = y − y′.
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In order to calculate the variations σ2
r and σ2

i , it is necessary to know
the shape of the autocorrelation function K( ) and the normalized correla-
tion function C( ). The autocorrelation function for the circular aperture is
calculated by inserting from Eq. (2.5) into Eq. (2.13)

K(X,Y ) =

(
a

λf1

)2

×
2J1

[
2πa(X2 + Y 2)1/2/(λf2)

]
2πa(X2 + Y 2)1/2/(λf2)

. (2.14)

According to Goodman (1984), we assume that the normalized correlation
function of the surface heights has Gaussian form

C(r) = exp

[
−
(
r

rc

)2
]
, (2.15)

where r = [(∆x)2 + (∆y)2]1/2 and rc is surface correlation length (White-
house, 1994).

After inserting from Eqs. (2.14) and (2.15) into Eqs. (2.11) and (2.12),
the approximate values of the variances can be calculated

σ2
r ≈ exp(−σ2)

M2
L

(coshσ2 − 1)× (2.16){
1− exp

[
−Chi(σ2)− γ − lnσ2

N(coshσ2 − 1)

]}
,

σ2
i ≈ exp(−σ2)

M2
L

sinhσ2 × (2.17){
1− exp

[
− Shi(σ2)

N sinhσ2

]}
.

Here, the symbols Chi( ) and Shi( ) denote the hyperbolic cosine and sine
integrals, respectively, γ is Euler-Mascheroni constant (γ ≈ 0.577), and the
parameter N is defined by (Abramowitz and Stegun, 1970; Goodman, 1984)

N =

(
λf1

πarc

)2

. (2.18)

The physical meaning of the parameter N can be explained by means of
speckle theory. The average diameter of a subjective speckle in the image
plane (the plane with CCD in Fig. 2.2) is given by (Lauterborn et al., 1995)

D = 0.61λ
f2

a
. (2.19)

The diameter of a correlation cell is equal to 2rc. The correlation cell pro-
jected into the image plane has diameter 2MLrc. Thus, the number of
correlation cells NC that contribute to one speckle is given by

NC =

(
D

2MLrc

)2

=

(
0.61λf2

2aMLrc

)2

=

(
λf1

3.28 arc

)2

≈ N. (2.20)
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It follows from Eq. (2.20) that the parameter N represents the number of
correlation cells that contribute to one speckle (Goodman, 1984).

The sought statistical parameters of the speckle pattern are expressed
by Eqs. (2.9), (2.10), (2.16), and (2.17).

2.2 Phase distribution function

The knowledge of the statistical properties makes it possible to calculate
the distribution function of the phase in the image plane (X, Y ). The
phase distribution function can be used as the sought criterion to distinguish
whether the surface is optically smooth or rough.

For the case when the quantities A(r) and A(i) have a normal distribu-
tion, the phase distribution function has the following shape (Da Costa and
Guerri, 1978)

pϑ(ϑ) =
n exp(−c)

2πα

{
1 +

√
πc

α
cosϑ exp

(
c cos2 ϑ

α

)
× (2.21)

[
1 + erf

(√
c

α
cosϑ

)]}
.

The dimensionless parameters n, c, and α are given by

n =
σr
σi
, (2.22)

c =
[〈A(r)〉]2

2σ2
r

, (2.23)

α =
σ2
i cos2 ϑ+ σ2

r sin2 ϑ

σ2
i

, (2.24)

and erf( ) denotes the error function.
The phase distribution function described by Eq. (2.21) depends on three

parameters 〈A(r)〉, σr, and σi. If we take into account Eqs. (2.8), (2.9),
(2.16), and (2.17), we find that the phase distribution function depends
on only two parameters N and σh/λ. The value of lateral magnification
ML does not influence the shape of the phase distribution function. The
parameters 〈A(r)〉, σr, and σi are inversely proportional to ML but only
their mutual ratios occur in Eq. (2.21).

Thus, the statistical distribution of the phase in the image plane is a
function of the parameters of both the object surface (σh and rc) and the
experimental setup (λ, a, and f1).

For large values of the parameter N , the quantities A(r) and A(i) have
a normal distribution. If the value of the parameter is lower (roughly N <
0.2), the shape of the distribution of quantities A(r) and A(i) deviates from
the normal one. Nevertheless, numerical simulations show that even in this
case the phase distribution is described by Eq. (2.21).
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2.3 Optically smooth and rough surface

The calculated phase distribution pϑ(ϑ) can be used as a criterion for whether
the surface is optically smooth or rough.

The optically smooth surface is characterized by no destructive interfer-
ence. Therefore, the surface is considered optically smooth if the phase dis-
tribution function pϑ(ϑ) has nonzero value mainly in the interval (−π/2, π/2]
(range of constructive interference). It is expressed mathematically

π/2∫
−π/2

dϑ pϑ(ϑ) ≥ 0.9973. (2.25)

The numerical factor 0.9973 is chosen to comply the three sigma rule. An
example of a phase distribution function for which the equality in Eq. (2.25)
is satisfied is illustrated by the solid line in Fig. 2.3. In this case N = 4 and
σh/λ = 0.095. It is clear from Fig. 2.3 that the main contribution to the
phase distribution is given by the phase values from −π/2 to π/2.

Figure 2.3: Phase distribution function for N = 4 and σh/λ = 0.095 (solid
line) and N = 4 and σh/λ = 0.270 (dashed line).

A fully developed speckle pattern arises if the phase distribution is uni-
form in the interval (−π, π]. Thus, the limit is set so that the average value
of the phase distribution function pϑ(ϑ) in the interval (−π/2, π/2] (range of
constructive interference) is approximately the same as the average value of
pϑ(ϑ) in the interval (−π,−π/2]∪(π/2, π] (range of destructive interference).
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N σh
λ

[〈A(r)〉]2
I σϑ

0.5 0.063 0.59 0.624

1 0.071 0.60 0.613

2 0.082 0.63 0.584

4 0.095 0.67 0.547

8 0.110 0.71 0.508

10 0.115 0.72 0.496

20 0.132 0.75 0.464

40 0.149 0.77 0.439

Table 2.1: Limit roughness values for optically smooth surface as function
of number N of correlation cells.

A surface is considered optically rough if

−π/2∫
−π

dϑ pϑ(ϑ) +

π∫
π/2

dϑ pϑ(ϑ) ≥ 0.9545

π/2∫
−π/2

dϑ pϑ(ϑ). (2.26)

The numerical factor 0.9545 is chosen because it matches the two-sigma
rule. If Eq. (2.26) is satisfied, the phase distribution can be considered
almost uniform. This is illustrated by the dashed line in Fig. 2.3. In this
case N = 4 and σh/λ = 0.270.

The limit roughness values for optically smooth surface are listed in
Table 2.1. The roughness value is expressed as ratio σh/λ. It is clear from
the Table 2.1 that the limit roughness values depend on the number N of
correlation cells. In addition, Table 2.1 shows intensity ratio [〈A(r)〉]2/I and
standard deviation σϑ of the phase in the image plane.

The expression [〈A(r)〉]2 represents the intensity of the specular compo-
nent. This intensity is compared with the total intensity I of the speckle
(Goodman, 1984)

I = [〈A(r)〉]2 + σ2
r + σ2

i . (2.27)

The ratio [〈A(r)〉]2/I is close to 1 for smooth surface. On the other hand it
tends to 0 for rough surface.



2.3. OPTICALLY SMOOTH AND ROUGH SURFACE 13

N σh
λ

[〈A(r)〉]2
I σϑ

0.5 0.239 0.0004 1.793

1 0.248 0.0004 1.793

2 0.258 0.0004 1.794

4 0.267 0.0004 1.794

8 0.276 0.0004 1.794

10 0.279 0.0004 1.794

20 0.287 0.0004 1.794

40 0.295 0.0004 1.794

Table 2.2: Limit roughness values for optically rough surface as function of
number N of correlation cells.

The value of standard deviation σϑ of the phase ϑ is calculated from the
phase distribution function

σ2
ϑ =

π∫
−π

dϑ pϑ(ϑ)ϑ2. (2.28)

It is clear from Table 2.1 that the limit roughness for optically smooth
surface takes values around one tenth of the wavelength. This is in agreement
with Häusler et al. (1999), according to which the optically smooth surface
is such that the height variances are below ±λ/8.

The limit roughness values for optically rough surface are given in Ta-
ble 2.2. Also here, the limit roughness values depend on the number N of
correlation cells. Table 2.2 also shows the values of the ratio [〈A(r)〉]2/I and
standard deviation σϑ. It is clear that the intensity of the specular compo-
nent is almost zero, as can be expected for a rough surface. For a completely
rough surface, the phase distribution function is a constant function with the
value 1/(2π). The standard deviation of such a function is π/

√
3 ≈ 1.813.

The results given in Table 2.2 are close to this value.
One can see from Table 2.2 that the limit roughness for optically rough

surface takes values around one fourth of the wavelength. According to
Häusler et al. (1999), the height variations should be greater than ±λ/4 for
optically rough surface.
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The meaning of the criteria defined by Eqs. (2.25) and (2.26) is explained
in Fig. 2.4. The standard deviation σϑ of the phase ϑ is plotted as a function
of relative roughness σh/λ. The marks OS - T and T - OR indicate the
transition from the optically smooth surface to the transient range and from
the transient range to the optically rough surface, respectively.

The maximum value of the standard deviation is π/
√

3 ≈ 1.813, which
corresponds to a continuous uniform distribution of ϑ from −π to π.

Figure 2.4: Standard deviation of phase ϑ as a function of relative roughness
σh/λ. The graphs are plotted for two cases. 1) f1 = 80 mm, a = 2.8 mm, λ =
820 nm (N = 1) (dashed line). 2) f1 = 358 mm, a = 2.8 mm, λ = 820 nm
(N = 20) (solid line). OS - T - transition from optically smooth surface to
transient range, T - OR - transition from transient range to optically rough
surface.

The limit roughness values are shown graphically in Fig. 2.5. The relative
roughness σh/λ is plotted on the horizontal axis and the inverse of the
number N is plotted on the vertical axis.

The curve AB represents the limit values for optically smooth surface
as shown in Table 2.1. The limit values for the optically rough surface are
illustrated by the curve EF according to Table 2.2. The area between the
curves AB and EF represents the transient range (Häusler et al., 1999).

The quantity 1/N (and not N) is chosen because 1/N is proportional
to the square of the numerical aperture of the lens L1 [for small values of
numerical aperture NA = λ/(πrc

√
N)]. Figure 2.5 shows that a surface with

a certain roughness is optically smooth for a small numerical aperture value
of L1 (large N). However, the same surface ceases to meet the conditions for
the optically smooth surface if the numerical aperture of L1 increases (verti-
cal movement up in the graph in Fig. 2.5). The increasing and decreasing of
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Figure 2.5: Limit roughness values for optically smooth and optically rough
surface.

the numerical aperture of L1 is shown by the vertical dotted line in Fig. 2.5.

The change of the surface correlation length rc has a similar effect. If
the other parameters do not change and the surface correlation length rc
increases, the initially optically smooth surface ceases to be optically smooth.

2.4 Transition between resolved and unresolved
mode

As the numerical aperture of the lens L1 increases, the resolution cell on the
rough surface decreases. The unresolved mode switches to resolved mode.
The transition from unresolved mode to resolved mode occurs when the
numerical aperture of L1 increases, even if the surface properties of the
object do not change.

Effective roughness can be used as a criterion whether the surface is
measured in resolved mode or unresolved mode. The effective roughness
is defined as the roughness that is measured if we measure inside a single
resolution cell only. The value of the effective roughness depends on the
roughness and the surface correlation length as follows from Fig. 2.6.

The radius rr of the resolution cell is equal to rr = 0.61λf1/a. If the ra-
dius rr decreases compared to the surface correlation length rc, the effective
roughness decreases. According to the definition, the effective roughness is
given by

σ2
e =

1

Arc

∫
Arc

dx dy h2(x, y), (2.29)
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Figure 2.6: Influence of radius rr on the value of effective roughness.

where Arc is the area of the resolution cell.

The integral in Eq. (2.29) can be converted using Plancherel’s theorem
to ∫

dx dy h2(x, y) =

∫
dνx dνy |F{h(x, y)}|2, (2.30)

where F denotes the Fourier transform and νx and νy are the spatial frequen-
cies corresponding to the x and y coordinates, respectively. The integral to
the right of Eq. (2.30) can be modified using the cross-correlation theorem∫

dνx dνy |F{h(x, y)}|2 =

∫
dνx dνy F{h(x, y) ? h(x, y)}. (2.31)

The symbol ? denotes the cross-correlation.

Recall that a normalized correlation function is defined by (Whitehouse,
1994)

C(x, y) =
1

σ2
hA

h(x, y) ? h(x, y). (2.32)

The symbol A means the area on which the normalized correlation function
is calculated.

Substituting from Eqs. (2.30), (2.31), and (2.32) into Eq. (2.29), we
obtain a relation for calculating the effective roughness

σ2
e = 2πσ2

h

∞∫
ρmin

dρ ρF{C}. (2.33)

Spatial frequency ρ is defined by ρ2 = ν2
x+ν2

y . The minimal spatial frequency
ρmin is related to the radius of the resolution cell ρmin = 1/(2rr).
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We use the Gaussian form of the normalized correlation function [de-
scribed by Eq. (2.15)] for the calculation. The Fourier transform of the
normalized correlation function is equal to

F{C} = πr2
c exp[−(πρrc)

2]. (2.34)

Thus the effective roughness is equal to

σe = σh exp

[
−1

2

(
πrc
2rr

)2
]
≈ σh exp

(
−0.34

N

)
. (2.35)

We choose the limit for the resolved mode so that the effective roughness
is the same as the limit roughness value for smooth surface and N = 1. This
means that σe/λ = 0.071 as follows from Table 2.1. This condition defines
curve CD in Fig. 2.5. The fully drawn curve ACD indicates the border of
the optically smooth surface and resolved mode.

Similarly, the limit for the unresolved mode is set so that the effective
roughness has the same value as the limit roughness value for rough surface
and N = 1. Table 2.2 shows that σe/λ = 0.248. Curve GH in Fig. 2.5 is
defined by this condition. The fully drawn curve EGH is the border of the
optically rough surface and unresolved mode.

The area between curves ACD and EGH corresponds to the transient
range.
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Chapter 3

Influence of noise

A 3D sensor usually measures one coordinate of a point on the surface of the
measured object. The measured coordinate value is expressed in relation to
the other coordinates. Depending on the type of sensor, coordinate values
of one or more points are measured. An example of such a measurement is
shown in Tab. 3.1. In this example, z coordinate of 6 points is measured.
The result of the measurement is the set of 6 values of the z coordinate
measured in relation to the x and y coordinates.

x (set value) y (set value) z (measured value)

µm µm µm

0 0 10.1

0 10 10.4

0 20 10.6

10 0 8.2

10 10 8.3

10 20 8.5

Table 3.1: Example of a 3D measurement.

The measured coordinate value (the measurement result) is usually ob-
tained by evaluation of a set of intensity values. As an example can be
mentioned coherence scanning interferometry where one value of the z co-
ordinate is obtained by the evaluation of an interferogram that may consist
of several hundreds of intensity values (Dresel et al., 1992).

19
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3.1 Signal

It has been mentioned above that the coordinate is determined from the
intensity values. In fact, the detector measures the energy W of detected
light

W = ηIAT, (3.1)

where η is the quantum efficiency, I is the intensity of light, A is the area of
the detector, and T is the detection time. Equation (3.1) is valid provided
that the intensity I is constant on area A over time T . Since the measured
value W is proportional to the intensity, it will be called intensity in what
follows. The whole set of values W0, W1,. . . ,WM−1 is called a signal. The
individual values W0, W1,. . . ,WM−1 are also called samples. The number of
samples is M .

The samples can be measured at one detector (e.g. a PIN diode) at
subsequent time points. A typical example is the white-light interferogram
recorded by a point sensor (Drabarek, 2001; Ulrich and Koch, 1992). An-
other possibility is that the samples are measured in various detectors (e.g.
pixels of a line CCD camera) in one time point. A typical example is the
signal of laser triangulation (Dorsch et al., 1994).

The searched coordinate value can be considered as a parameter of the
acquired signal. Depending on the nature of the measurement, this may be,
for example, the position of the maximum of the signal or the position of
the center of gravity of the signal.

An example of a signal is shown in Fig. 3.1(a). The white bars indicate
the individual intensity values Wi (the samples). Each intensity value Wi is
assigned to a specific coordinate θi. In this example, the measured coordi-
nate value is obtained as the position of the maximum of the signal. This
position is denoted by θM and it is the searched parameter.

Since the sample values provide the only source of information, any esti-
mate of the searched signal parameter must be some function of the samples
{Wi} (Riley et al., 2004). Such a function is called estimator.

However, the intensity values cannot be measured absolutely accurately
because each measurement is affected by an error. The set of the individual
errors is called noise. Thus, the measured signal is composed of the model
signal and the noise [A3] (Pavĺıček and Michálek, 2012b). The terms signal,
model signal, and noise are explained in Fig. 3.1(b).

The white bars indicate the model signal. Model signal is the signal
that would be obtained without the influence of the noise. The black bars
indicate the noise. The resulting (measured) signal is indicated by the white
rings.

Since the measured intensity values (samples) are affected by error, the
searched parameter is also calculated with a certain error. This error is
called measurement error. The cause of the measurement error is that the
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Figure 3.1: (a) Example of a signal. (b) Explanation of terms model signal
(white bars - dashed line), noise (black bars), measured signal (white rings
- solid line) and measurement error e (e = θM − θM ).

measured signal is evaluated instead of the model signal (which cannot be
evaluated in principle). The measurement error is the error with which the
coordinate is measured.

The measurement error should not be confused with the error that oc-
curs when measuring individual samples [which is represented by black bars
in Fig. 3.1(b)]. The meaning of the measurement error is explained in
Fig. 3.1(b). The position of the maximum of the model signal is denoted
by θM . The model signal is fitted by the dashed line. The position that is
obtained as the maximum of the measured signal is denoted by θM . The
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measured signal is fitted by the solid line. The measurement error e is equal
to e = θM − θM . The measurement error e is a random signed quantity. Its
value is unknown.

Suppose we measure a signal several times in a row, the model signal of
which is always the same. As a result, we measure a different signal each
time, because noise is a random variable. Because the searched parameter
is determined from the measured signal, each measurement gives a different
result of the searched parameter. Thus, the searched parameter is also a
random variable, we can determine its mean value and variance.

In general, we get different values of variance if we use different esti-
mators. An estimator is called more efficient if the variance of the result
is lower and less efficient if the variance is higher. However, the variance
cannot be arbitrarily small. The variance cannot go below a certain limit.
This limit can be calculated using Cramér-Rao inequality (Albrecht et al.,
2003).

According to Guide to expression of uncertainty in measurement (2016),
measurement uncertainty is a parameter that describes the dispersion of the
measurement error. Thus, the measurement uncertainty can be identified
with the standard deviation of the signal parameter being sought. Note that
the standard deviation is the square root of variance.

Thus, the Cramér-Rao inequality is a suitable mathematical tool to de-
termine the measurement uncertainty [A1] Pavĺıček and Svak (2015). Two
items of information need to be known for the application of the Cramér-Rao
inequality:

• the analytical description of the model signal,

• the probability density function of the noise.

Because of the second point, an important task is to know the dominant
source of noise. As for optical 3D sensors, the major sources of the noise
are: the random arrival of photons at the detector (shot noise) and coher-
ent noise (speckle pattern). These two sources are fundamental, although it
may happen that other sources of noise (e.g. optical aberrations, mechani-
cal vibrations, electronic noise, light source instabilities, positioning errors,
quantization noise) become dominant (Pavĺıček and Häusler, 2014).

The analytical expression of the model signal is assumed in the form

Wmi = Wm(θi, a) for i = 0, 1, . . . ,M − 1, (3.2)

where Wm is an analytically described function and a is the searched pa-
rameter of the model signal.

For practical reasons, it is advantageous to divide the intensity depen-
dence on the coordinate into a constant Wmc (with dimension of energy)
and a dimensionless function g( )

Wmi = Wm(θi, a) = Wmc g(θi, a) for i = 0, 1, . . . ,M − 1. (3.3)
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The measurement uncertainty depends on the shape of the model signal,
the intensity and characteristics of the noise, and the estimator (algorithm)
used. In practice, this means that the measurement uncertainty depends on
the geometric arrangement of the optical 3D sensor, on the light source and
its intensity, and the detector and its sensitivity (Ronchi, 1961).

3.2 Cramér-Rao inequality

The Cramér-Rao inequality expresses a lower bound on the variance of an
estimator of a deterministic parameter. A parameter is called deterministic
if it is fixed but unknown.

In our case, the parameter is the searched value of spatial coordinate.
The determined lower bound represents a lower limit of the square of mea-
surement uncertainty. Thus, the Cramér-Rao inequality makes it possi-
ble to calculate the minimum achievable measurement uncertainty [A4, A2]
(Pavĺıček and Hýbl, 2012; Pavĺıček and Michálek, 2012a).

The Cramér-Rao inequality states that the variance of any unbiased
estimator is at least as high as the inverse of the Fisher information J

σ2
a ≥

1

J
. (3.4)

An estimator is called unbiased if its expectation value is equal to the
true value. For practical computation of the parameters, the least-squares
method can be used. The least squares method is generally a biased estima-
tor. Nevertheless, the least-squares method can be considered as an unbiased
estimator when the standard deviation of the noise is small in comparison
with the amplitude of the signal (Kubáček, 1988).

The Fisher information is given by

J = E

[(
∂ ln p(θ, a)

∂a

)2
]
, (3.5)

where p(θ, a) is the joint probability density function and E[ ] denotes the
expected value related to the distribution. The particular shape of the joint
probability density function p(θ, a) depends on the analytical description of
the model signal and the probability density function of the noise.

The method of calculating the measurement uncertainty is shown using
an example of shot noise.

3.3 Cramér-Rao inequality for shot noise

Shot noise describes the fluctuations of the number of detected photons.
Mathematically, shot noise is described by Poisson distribution. The prob-
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ability density for discrete value yi is given by (Vencálek, 2018)

p(yi, a) =
λyii
yi!

exp(−λi), (3.6)

where yi is the measured value of the intensity (in photocounts) and λi
represents the value of the model signal (in photocounts). The quantities yi
and λi can be expressed

yi =
Wi

hν
, (3.7)

λi =
Wmi

hν
=
Wm(θi, a)

hν
, (3.8)

where h is Planck constant and ν is the frequency of light. Comparing
Eq. (3.8) to Eq. (3.3), we see that λi = g(θi, a) and Wmc = hν.

We assume that the individual measurements are independent. Then,
the joint probability density function is equal to the product of probability
densities in all points 0 . . .M − 1 .

p(y, a) =
M−1∏
i=0

p(yi, a) =
M−1∏
i=0

λyii
yi!

exp(−λi). (3.9)

The Fisher information is calculated by substituting the joint probability
function from Eq. (3.9) into Eq. (3.5). The partial derivative of the logarithm
of the joint probability density function is equal

∂ ln p(y, a)

∂a
=

M−1∑
i=0

(
yi
λ′i
λi
− λ′i

)
, (3.10)

where λ′i is the partial derivative of the model signal according to a

λ′i =

[
∂g(a, θ)

∂a

]
θ=θi

. (3.11)

The square of the expression on the left hand side of Eq. (3.10) is calculated(
∂ ln p(y, a)

∂a

)2

=

M−1∑
i=0

(
yi
λ′i
λi
− λ′i

)2

+ (3.12)

+

M−1∑
i=0

M−1∑
j=0, j 6=i

(
yi
λ′i
λi
− λ′i

)(
yj
λ′j
λj
− λ′j

)
.

In calculating the expected value, it is used that it holds

E[yi] = λi, (3.13)

E[y2
i ] = λi(λi + 1). (3.14)
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We substitute from Eq. (3.12) to Eq. (3.5) and use Eqs. (3.13) and (3.14)

J = E

[(
∂ ln p(θ, a)

∂a

)2
]

=

M−1∑
i=0

λ′2i
λi
. (3.15)

Since λi = g(a, θi), Fisher information is equal to

J =

M−1∑
i=0

[
∂g(a, θ)

∂a

]2

θ=θi

1

g(a, θi)
. (3.16)

We calculate the value of the lower limit of the measurement uncertainty by
substituting the result of Eq. (3.16) into Eq. (3.4).

3.4 Summary

The noise causes measurement uncertainty. The terms signal, model signal
and noise have been explained. Cramér-Rao inequality has been introduced
as a means of calculating the measurement uncertainty. Because shot noise
plays an important role in optics, the shape of Cramér-Rao inequality has
been calculated for this type of noise. This chapter is based on publications:

[A1] Pavĺıček, P. and V. Svak (2015). Noise properties of Hilbert transform
evaluation. Measurement Science and Technology 26(8), 085207.

[A2] Pavĺıček, P. and V. Michálek (2012a). White-light interferometry–
envelope detection by Hilbert transform and influence of noise. Optics
and Lasers in Engineering 50(8), 1063—1068.

[A3] Pavĺıček, P. and V. Michálek (2012b). White-light interferometry,
Hilbert transform, and noise. In SPIE 8697, pp. 86970B.

[A4] Pavĺıček, P. and O. Hýbl (2012). White-light interferometry on rough
surfaces—–measurement uncertainty caused by noise. Applied Optics
51(4), 465—473.
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Chapter 4

Measurement uncertainty on
optically smooth surfaces

As mentioned in Chapter 3, the shot noise will be considered as the dom-
inant source of noise if the shape of an object with optically smooth sur-
face is measured. This approach makes it possible to compare the ultimate
measurement uncertainty of various optical 3D measurement methods [A5]
(Pavĺıček and Pech, 2016).

The shot noise originates from the particle nature of light. The relation-
ship between the variance (∆N)2 in the photocount number and the mean
photocount number 〈N〉 is given by the Poisson distribution (Fox, 2006)

(∆N)2 = 〈N〉. (4.1)

If we measure the value of coordinate θ and know the analytical form of
the model signal g( ) then the lower limit δa of measurement uncertainty is
calculated from the Cramér-Rao inequality

(δa)2 ≥

{
M−1∑
i=0

[(
∂g(a, θi)

∂a

)2

θ=θi

1

g(a, θi)

]}−1

. (4.2)

Equation (4.2) is the result of substituting Eq. (3.16) into Eq. (3.4). Note
that function g( ) is expressed in photocounts.

Then, the number Nall of photocounts detected in all samples is equal
to

Nall =
M−1∑
i=0

g(a, θi). (4.3)

Therefore Eq. (4.2) can be rewritten to

(δa)2 ≥
∑M−1

i=0 I(a, θi)

Nall
∑M−1

i=0

[(
∂I(a,θi)
∂a

)2

θ=θi

1
I(θi,a)

] . (4.4)

27
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The advantage of writing the Cramér-Rao inequality in the form given by
Eq. (4.4) is that the intensity I can be expressed in arbitrary units because
I( ) ∝ g( ). If the number M of samples is high, it is convenient to replace
the sums in Eq. (4.4) by integrals [A7] (Pavĺıček and Häusler, 2014)

(δa)2 ≥

∞∫
−∞

dθI(a, θ)

Nall

∞∫
−∞

dθ[I ′(a, θ)]2/I(a, θ)

, (4.5)

where I ′(a, θ) is the partial derivative of function I(a, θ) with respect to a.

The result represented by Eq. (4.5) coincides with the result of Falconi
(1964) who derived it for the angular position being the measured parameter.
The meaning of Eq. (4.5) becomes clear below, when applied to particular
measurement methods.

The shape of the object is measured by processing and evaluating the
signal as described in Chapter 3. It turns out that one plane wave is not
enough to generate a usable signal. Some possibilities how to obtain a
signal that can be used for the measurement of the shape are described in
the following text.

4.1 Two-slit device

An idealized measurement device that uses two plane waves is shown in
Fig. 4.1. The measurement device is inspired by that described by Falconi
(1964). A screen with two slits is located in the front focal plane of a lens
with focal length f . The distance between the slits amounts to 2u. Behind
the lens, two plane waves with wave vectors k1 and k2 propagate and impinge
on the surface of the measured object. The components of wave vectors are
given as follows k1 = (−kx0, 0, kz0)) and k2 = (kx0, 0, kz0). The light reflects
from the surface and propagates to a CCD line detector.

First, it is assumed that the object surface is perpendicular to the z-axis.
Because of the interference of the two plane waves, a typical cosinusoidal
interference pattern forms on the detector. The intensity distribution along
the x-axis is illustrated by solid line in Fig. 4.2(a). Mathematically, the
intensity distribution is expressed by

I(x) = I0[1 + cos(2kx0x)], (4.6)

where I0 is mean intensity of the pattern.

If the surface is tilted by angle α around the y-axis, the interference
pattern moves by distance x0. The intensity distribution changes to

I(x) = I0{1 + cos[2kx0(x− x0)]}. (4.7)
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Figure 4.1: Schematic of two-slit device.

Figure 4.2: Two-slit device: (a) model signal, (b) normalized spectral den-
sity.

The changed intensity distribution is illustrated by dashed line in Fig. 4.2(a).
The intensity distribution on the detector represents the signal of the

measurement device. From the change of the signal, the angle α of tilt can
be determined. For small angles, it holds

x0 = 2αt, (4.8)

where t is the distance between the mirror and the CCD. Thus, the described
device is a simple model of a deflectometer.

The measurement uncertainty δx0 can be calculated using Eq. (4.5). The
shift x0 plays the role of parameter a.

δx0 =
1

2kx0

√
Nall

. (4.9)

The normalized spectral density s of the lateral component kx of vector
k is given by

s(kx) =
1

2
[δ(kx + kx0) + δ(kx − kx0)]. (4.10)
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The graph of the distribution is shown in Fig. 4.2(b). The lateral com-
ponent of vector k takes two possible values: kx0 and −kx0 both with the
same relative appearance. The standard deviation of the lateral component
kx is equal to

δkx = kx0. (4.11)

By the combination of Eqs. (4.9) and (4.11), the uncertainty product is
obtained [A6] (Pavĺıček, 2014)

δx0 · δkx =
1

2
√
Nall

. (4.12)

It follows from Eq. (4.12) that the uncertainty product depends only on
the number Nall of photons used for the measurement.

The uncertainty of angle α follows from Eq. (4.8)

δα =
δx0

2t
. (4.13)

The lateral size X of the area on which both waves overlap can be ex-
pressed by

X = 2(R− u) +
2tu

f
(4.14)

and R is the radius of the aperture. The minimum size Xmin for which the
interference can be observed on the CCD is given by the condition R = u.
Thus the minimum size is given by

Xmin =
2tu

f
. (4.15)

For small angles of wave propagation (kx0 � kz0), it holds kx0 = 2πu/(λf).
The uncertainty product for the uncertainty δα and minimum size Xmin can
be calculated from Eqs. (4.13) and (4.15)

δα ·Xmin =
λ

4π
√
Nall

. (4.16)

The measurement uncertainty δα depends on the wavelength λ of the
light, the size Xmin, and the number Nall of photons. It is noteworthy that
the measurement uncertainty δα does not depend on the distance between
the measured surface and the CCD detector. The size Xmin can be con-
sidered as the lateral resolution distance on the measured surface. Note
that the distance l does not occur in Eq. (4.16). The result described by
Eq. (4.16) is identical with that of Falconi (1964).
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4.2 Two-slit device for z-direction

In order to measure in the z-axis direction, various values of the component
kz are necessary. This condition is not met on the two-slit device as described
in Section 4.1. However, it is possible to modify the two-slit device so that
the measurement in the z-axis direction is possible. The arrangement is
presented in Fig. 4.3. The slits have form of two concentric circles with radii
R1 and R2, respectively. The components of wave vectors are given by k1 =
(kx1, ky1, kz1) and k2 = (kx2, ky2, kz2) with k2

x1 + k2
y1 + k2

z1 = k2
x2 + k2

y2 + k2
z2

and kz2 6= kz1. The light reflects from the measured object and propagates
to a photodetector.

Figure 4.3: Schematic of two-slit device for z-axis direction.

The described device is a model of optical focus sensor (Schmit et al.,
2007). It can measure the height h of the object. The measured object
moves along the optical axis during the measurement process as indicated
by the arrow in Fig. 4.3. If the object moves, the path length p changes. We
assume that the intensity in both slits is the same. The amplitude function
is given by

A(p) ∝
√
I0{exp[ikz1(p− p0)] + exp[ikz2(p− p0)]}. (4.17)

The sought quantity is the parameter p0 from which the height h of the
object can be determined h = p0/2. The longitudinal components kz1 and
kz2 are equal to kz1 = (2π/λ)[1−R2

1/(2f
2)] and kz2 = (2π/λ)[1−R2

2/(2f
2)],

respectively. The measured signal is the intensity at the detector

I(p) = |A(p)|2 ∝ I0{1 + cos[(kz1 − kz2)(p− p0)]}. (4.18)

Graphically it is illustrated in Fig. 4.4(a). The measurement uncertainty
δp0 is obtained after inserting into Eq. (4.5).
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Figure 4.4: Two-slit device for z-axis direction: (a) model signal, (b) nor-
malized spectral density.

δp0 =
1

(kz1 − kz2)
√
Nall

=
λ

π
√
Nall

f2

R2
1 −R2

2

. (4.19)

The normalized spectral density of the longitudinal component kp of
vector k is given by

s(kp) =
1

2
[δ(kp − kz2) + δ(kp − kz1)]. (4.20)

The graph of the normalized spectral density is shown in Fig. 4.4(b). The
standard deviation of kp is δkp = (kz1 − kz2)/2. After combining this result
with Eq. (4.19), the uncertainty product appears

δp0 · δkp =
1

2
√
Nall

. (4.21)

The result of this uncertainty product is identical with that of Eq. (4.12).

Classical interferometry can also be considered as a special case of this
arrangement. It is formed by two rays in opposite directions (kz1 = k0, kz2
= -k0) (Pavĺıček and Häusler, 2014; Pavĺıček and Pech, 2016). In this case,
the measured signal is the dependence of the intensity I on the positions z1

and z2 of the mirrors

I = I0{1 + cos[2k0(z2 − z1)]}. (4.22)

Note the variance of the wave number occurs due to the different light
ray directions, while the laser wavelength is fix. This explains the lower
measurement uncertainty for classical interferometry in comparison with
that for confocal microscopy. The variance of the wave vector components
is maximized in a classical interferometry setup (two rays with opposite
directions) (Fischer, 2019).
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4.3 Device with a general shape aperture

The devices mentioned in Sections 4.1 and 4.2 are special cases of a device
with a general shape aperture.

For the lateral direction, the amplitude function is equal to

A(x) ∝
∫
A
dξ dη exp

[
i
2π

λ

ξ

f
(x− x0)

]
, (4.23)

where A is the aperture and ξ and η are the lateral coordinates in the
aperture plane.

For the longitudinal direction, the amplitude function is given by

A(p) ∝ exp

[
i
2π

λ
(p− p0)

] ∫
A
dξ dη exp

[
−i2π

λ

ξ2 + η2

2f2
(p− p0)

]
. (4.24)

The amplitude function is calculated for circular aperture as an exam-
ple. The aperture A is a disk with radius a. According to Eq. (4.24), the
amplitude function is equal to

A(p) ∝ 1

2
a2 exp

[
i
2π

λ

(
1− a2

4f2

)
(p− p0)

]
sinc

[
2π

λ

a2

4f2
(p− p0)

]
. (4.25)

The corresponding intensity function has the form

I(p) ∝ 1

4
a4sinc2

[
2π

λ

a2

4f2
(p− p0)

]
. (4.26)

Intensity function is the measured signal. The result from Eq. (4.26)
coincides with the intensity dependence for the scanning microscopy (Shep-
pard and Wilson, 1978).

4.4 General description

It is apparent that the signal and the spectral density are related to each
other. The measurement uncertainty is calculated from the signal I(θ) by
means of Eq. (4.5). The standard deviation of the wave number is calculated
from the normalized spectral density s(kθ). The quantity kθ is the angular
spatial frequency associated with the coordinate θ. In Eqs. (4.6) and (4.17),
kθ corresponds to a spatial component of the wave vector k.

The signal (intensity) I(θ) is related to amplitude function A(θ) in a
similar way as the spectral density S(kθ) is related to amplitude spectral
density V (kθ) (Peřina, 1971)

I(θ) = |A(θ)|2, (4.27)

S(kθ) = |V (kθ)|2. (4.28)
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The relation between S(kθ) and s(kθ) is given by

s(kθ) =
S(kθ

∞∫
−∞

dkθS(kθ)

. (4.29)

The amplitude spectral density is connected with the amplitude function
by Fourier transform

V (kθ) =

∞∫
−∞

dθA(θ) exp(−ikθθ) = F{A(θ)}. (4.30)

The reason why the path length p is chosen as the coordinate θ in
Eq. (4.17) instead of the distance z is the agreement of Eq. (4.30) with
variables kz1 and p.

The relation of quantities I(θ), A(θ), V (kθ), and S(kθ) is illustrated in
Fig. 4.5. An example of the triplet A(θ), I(θ), and s(kθ) is represented by
Eqs. (4.17), (4.18), and (4.20).

Figure 4.5: The relation of quantities I(θ), A(θ), V (kθ), and S(kθ).

The uncertainty of parameter a can be calculated by inserting A(θ, a)
into Eq. (4.5)

(δa)2 =

∞∫
−∞

dθ|A(θ, a)|2

Nall

∞∫
−∞

dθ
[
∂
∂a(|A(θ, a)|2)/|A(θ, a)|

]2 . (4.31)

Equation (4.31) can be further simplified, if the amplitude function is
real up to a multiplicative factor

A(θ, a) = βAR(θ, a). (4.32)

The function AR(θ, a) is real and β can be expressed as

β = exp[i(kSθ + ϕ0)], (4.33)
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where kS is a constant angular spatial frequency and ϕ0 is phase constant.

Then, Eq. (4.31) takes the form

(δa)2 =

∞∫
−∞

dθ[AR(θ, a)]2

4Nall

∞∫
−∞

dθ
[
∂
∂aAR(θ, a)

]2 . (4.34)

The amplitude spectral density is equal to

V (kθ) = exp(−iϕ0)F{AR(θ, a)}(kθ − kS). (4.35)

Because AR(θ, a) is a real function, V (kθ) is symmetric and shifted by kS .
For example, the shift is equal to kS = (k1 + k2)/2 in the case of two-slit
device as follows from Eq. (4.20) and Fig. 4.4(b).

The standard deviation of kθ can be calculated by means of Eqs. (4.28)
and (4.30).

(δkθ)
2 =

∞∫
−∞

dkθ|F{AR(θ, a)}|2k2
θ

∞∫
−∞

dkθ|F{AR(θ, a)}|2
. (4.36)

The function g(θ, a) from Eq. (4.2) has usually the form g(θ − a) as
can be seen in Eqs. (4.7) and (4.18). Then, ∂g/∂θ = −∂g/∂a and it holds
according to Plancherel’s theorem

∞∫
−∞

dθ[AR(θ, a)]2 =

∞∫
−∞

dkθ|F{AR(θ, a)}|2. (4.37)

Similarly, it holds

∞∫
−∞

dkθ|F{AR(θ, a)}|2k2
θ =

∞∫
−∞

dθ

[
∂

∂a
AR(θ, a)

]2

. (4.38)

The uncertainty product is calculated by use of Eqs. (4.34), (4.36), (4.37),
and (4.38)

δa · δkθ =
1

2
√
Nall

. (4.39)

As expected, the result given by Eq. (4.39) coincides with those of Eqs. (4.9)
and (4.21).
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4.5 Derivation without quantum theory

Equation (4.5) contains the number Nall of photocounts detected in all sam-
ples. Thus, it would seem that Eq. (4.5) has to be derived using methods
of quantum optics. However, the equation for calculating the measurement
uncertainty can be derived from simple assumptions.

In a CCD detector, the number of photons is converted to a charge and
subsequently the charge is converted to voltage. A CCD camera consists of
a CCD chip and associated electronics, which is used to amplify the voltage
on the CCD, digitise the pixel values and output the values of each pixel to
a PC. The intensity of light in a given pixel is expressed by a number nDN.
DN states for digital number. For example, the number nDN is in the range
of 0 to 4095 for a 12-bit CCD camera.

The signal is then described by

(nDN)j for j = 0 . . .M − 1 (4.40)

for discrete values or by

nDN(x) for x ∈ [x1, x2] (4.41)

for continuous values.
It is mentioned in Section 3.1 that we need to know two items of the

information for the application of the Cramér-Rao inequality. They are
the analytical description of the model signal and the probability density
function of the noise.

The analytical description of the model signal is known for the individual
methods. Examples of the signal are given in Eqs. (4.6), (4.18), (4.22), and
(4.26).

Concerning the noise, the light of lasers obeys Poisson photocount dis-
tribution. However, for large intensities (such as those used for practical
measurements) Poisson distribution can be approximated by normal distri-
bution with mean 〈nDN〉 and variance (∆nDN)2. The variance is directly
proportional to the mean

(∆nDN)2 = κ〈nDN〉, (4.42)

where κ is a proportionality constant. Equation (4.42) is analogy of Eq. (4.1).
In this case, the Cramér-Rao inequality gives the result (for the case of

equality)

(δa)2 ≈ κ

{
M−1∑
i=0

[(
∂nDN(a, xi)

∂a

)2

x=xi

1

nDN(a, xi)

]}−1

. (4.43)

Equation (4.43) is equivalent to Eq. (4.2). The meaning of nDN(x, a) and
∂nDN(x, a)/∂a follows from Fig. 4.6.
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Note: In Eq. (4.43), the approximation sign is used instead of the equal
sign. This is because in addition to the term on the right side of Eq. (4.43),
an additional term appears in the result. The additional term is smaller
than the listed term in a ratio equal to 1 : [2 (SNR)2], where SNR is signal
to noise ratio. Thus, for usual values of intensity, the additional term may
be neglected.

The only quantum assumption in the above derivation is Eq. (4.42).
This equation can be considered as one of the heads of atomic phenomena,
as Lederman and Hill (2011) write about them 1.

Figure 4.6: An example of a signal nDN(x). Meaning of quantities nDN(x, a)
and ∂nDN(x, a)/∂x.

4.6 Summary

The measurement uncertainty has been calculated for the case of an optically
smooth surface. In this case, shot noise can be considered as the dominant
source of noise. The measurement uncertainty has been calculated for two
strongly simplified models of optical 3D sensors. The first model represents
a deflectometer while the second can be considered as a model of the focus
sensor and, with some variation, of the classical interferometer. The calcu-
lations have shown that in both cases an uncertainty product can be found
that combines the measurement uncertainty and the standard deviation of
the spectral density. It has also been indicated how it is possible to switch
from simplified models to usual optical sensors. Finally, general rules have
been found that apply to the generation of the uncertainty product. This
chapter is based on the following publications:

[A5] Pavĺıček, P. and M. Pech (2016). Shot noise limit of the optical 3D
measurement methods for smooth surfaces. Measurement Science and
Technology 27(3), 035205.

1L. M. Lederman and C. T. Hill write in the mentioned book: ”We should not be
surprised that atomic phenomena can occasionally rear their heads in the macroscopic
world of people and their measuring instruments.”
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[A6] Pavĺıček, P. (2014). Optical methods for the measurement of the
shape of objects and their measurement uncertainty. In SPIE 9441,
pp. 94411K.

[A7] Pavĺıček, P. and G. Häusler (2014). Methods for optical shape mea-
surement and their measurement uncertainty. International Journal
of Optomechatronics 8(4), 292—303.



Chapter 5

Measurement uncertainty on
optically rough surfaces

As an example of uncertainty on rough surface, the measurement uncer-
tainty of coherence-scanning interferometry is mentioned. The dominant
noise of coherence-scanning interferometry on rough surface is the influence
of surface roughness (Häusler and Ettl, 2011; Pavĺıček, 2011). This kind of
noise is also referred to as object noise.

5.1 Measurement uncertainty

A typical setup for coherence-scanning interferometry on rough surfaces is
shown in Fig. 5.1. The measured object with the rough surface is placed
in one arm of Michelson interferometer. The object is moved during the
measurement and an interferogram is recorded in each pixel of CCD camera.
Because of the rough surface, the phase of the interferogram is not evaluated.
The position at which the interferometer is balanced is determined from the
maximum position of the interferogram envelope. The Hilbert transform is
used as a standard tool for calculating the interferogram envelope (Pavĺıček
and Svak, 2015).

The rough surface is considered as a set of scattering centers with ran-
domly varying height and reflectivity (Goodman, 1984, 2008). When objects
with optically rough surfaces are measured, a speckle pattern arises in the
image plane. The goal is to find the distribution of the measurement error
caused by the surface roughness. Based on this knowledge, the measurement
uncertainty is determined [A9] (Pavĺıček and Hýbl, 2008).

The measurement error is calculated with following assumptions:

1. A planar rough surface is considered.

2. The resolution cell of the imaging system contains N scattering cen-
ters.

39
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Figure 5.1: Setup for coherence-scanning interferometry on rough surface.

3. Height hj of the jth scattering center is a random variable obeying a
Gaussian distribution with zero mean. Standard deviation σh of the
height distribution is equal to quadratic roughness (Nieto-Vesperinas,
2006).

4. Without loss of generality, we may assume that the reflectivity of all
scattering centers is equal to 1 (Goodman, 1984).

5. The spectral density of the broad-band light source has a Gaussian
form

S(k) =
1

2
√
π∆k

exp

[
−
(
k − k0

2∆k

)2
]
, (5.1)

where k0 is the central wave number and ∆k is the effective band width
[A8] (Pavĺıček and Soubusta, 2003).

In practice, the spectral width is usually expressed in wavelength units.
The relation between effective band width ∆k and the full width at half
maximum (FWHM) in wavelength units is given by [A8] (Pavĺıček and Sou-
busta, 2003)

∆k = 4
π√
ln 2

1

FWHM(λ)

√1 +

(
FWHM(λ)

λ

)2

− 1

 (5.2)

≈ π

2
√

ln 2

FWHM(λ)

λ2
.

The fact that FWHM is expressed in wavelength units is indicated by
the symbol λ in parentheses. The coherence length of the light source with
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the spectrum described by Eq. (5.1) is given by

lc =
1

2∆k
≈
√

ln 2

π

λ2

FWHM(λ)
. (5.3)

The interferogram for monochromatic light with wave number k is given
by [A10] (Pavĺıček, 2008)

I(z) = C2 + S2 +B2︸ ︷︷ ︸
offset

+ 2B(C cos 2kz + S sin 2kz)︸ ︷︷ ︸
modulation part

. (5.4)

The meaning of the symbols used in Eq. (5.4) is as follows

C =

N−1∑
i=0

cos 2khi, (5.5)

S =
N−1∑
i=0

sin 2khi, (5.6)

and B is the amplitude of the reference wave.
The modulation part for polychromatic light is given by integration over

the spectrum of the light source

Imod =

∞∫
0

dk S(k) 2B(C cos 2kz + S sin 2kz). (5.7)

The integration can be carried out

Imod = 2B
N−1∑
i=0

exp[−4(z − hi)2(∆k)2] cos 2k0(z − hi). (5.8)

The square of the envelope of the interferogram can be expressed by

E2 = 4B2
N−1∑
i=0

N−1∑
j=0

exp{−4[(z−hi)2+(z−hj)2](∆k)2} cos 2k0(hi−hj). (5.9)

It follows from Eq. (5.4) that the intensity of a speckle with shut reference
arm (B = 0, the object arm only is open) is given by

Iobj = C2 + S2 =
N−1∑
i=0

N−1∑
j=0

cos(ϕi − ϕj) (5.10)

with ϕi = 2k0hi. The mean value of Iobj is equal to

〈Iobj〉 = N. (5.11)
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The position ze of the maximum of the envelope can be calculated from
the condition ∂E/∂z = 0 that is equivalent to ∂E2/∂z = 0. It follows from
Eq. (5.9)

ze ≈
∑N−1

i=0

∑N−1
j=0 (hi + hj) cos[2k0(hi − hj)]

2
∑N−1

i=0

∑N−1
j=0 cos[2k0(hi − hj)]

. (5.12)

The mean of the numerator of the expression in Eq. (5.12) is equal to
zero. Thus, the variance is given by

var(numerator) = 〈(numerator)2〉. (5.13)

The angled brackets 〈 〉 denote expected value. The expression 〈(numerator)2〉
is calculated using Eq. (5.11)

〈(numerator)2〉 =

〈N−1∑
i=0

N−1∑
j=0

(hi + hj) cos(ϕi − ϕj)

2〉

=
N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

N−1∑
l=0

〈(hi + hj)(hk + hl) cos(ϕi − ϕj) cos(ϕk − ϕl)〉

= 4
N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

〈cos(ϕi − ϕj) cos(ϕi − ϕk)〉σ2

= 2N

N−1∑
i=0

N−1∑
j=0

cos(ϕi − ϕj)σ2

= 2〈Iobj〉Iobj. (5.14)

It follows from Eqs. (5.12), (5.10), and (5.14) that the standard deviation
of the position ze is equal to

δ(ze) =
1√
2

√
〈Iobj〉
Iobj

σh. (5.15)

The result given by Eq. (5.15) is the same as that derived by Dresel
(1991). However the way of derivation presented here is different from that
performed by Dresel.

Equation (5.15) shows that for bright speckles, the measurement uncer-
tainty is lower. Wiesner et al. (2012) introduced the idea of creating multiple
speckle fields using light sources with different wavelengths. At each point
of the measured surface, the brightest speckle is then selected for evaluation.

5.2 Distorted interferograms

George and Jain have demonstrated that speckle patterns of two different
wavelengths become decorrelated if the surface roughness exceeds a certain
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limit (George and Jain, 1973). Speckle pattern produced by broad band light
can also be expected to be decorrelated if the surface is too rough. The goal
is to find a similar limit for broad-band illumination. The knowledge of
such a roughness limit is important for practical measurements because the
interferogram obtained from a decorrelated speckle pattern is distorted and
it is difficult to evaluate it correctly.

As an example, a measured distorted interferogram for λ = 820 nm,
FWHM(λ) = 44 nm (lc = 4.1 µm), Ra = 1.6 µm (σh ≈ 2.0 µm), and
Iout obj/〈Iout obj〉 = 1.2 is shown in Fig. 5.2(a). It is difficult to evaluate
such a distorted interferogram correctly. For instance, if we use the ma-
ximum (Saraç et al., 2004) or the center of gravity (Recknagel and Notni,
1998) of the interferogram’s envelope as the indicator of the balance of the
interferometer, we obtain two different values, as shown in Fig. 5.2(a).

Figure 5.2: Example of measured interferograms. λ = 820 nm, FWHM(λ)
= 44 nm, Ra = 1.6 µm. (a) Distorted interferogram. (b) Undistorted
interferogram.

On the other hand, the different results provided by the different evalu-
ation methods can be used as a decision criterion whether the interferogram
is distorted or not [A9] (Pavĺıček and Hýbl, 2008). Let us denote

∆form = ze max − ze cog, (5.16)

where ze max is the position of the maximum of the calculated interferogram’s
envelope, as described in Section 5.1, and ze cog is the position of the center
of gravity of the interferogram’s envelope. The meaning of ze max and ze cog

is illustrated in Fig. 5.2(a).
The numerically calculated distribution of difference ∆form for FWHM(λ)

= 38 nm, σh = 1.2 µm, and Iout obj = 〈Iout obj〉 is depicted in Fig. 5.3 as an
example. The distribution has been estimated based on 40 000 simulations.
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The number of scattering regions N = 200. It turns out that the distribu-
tion of ∆form does not approach a Gaussian form. Numerical simulations
show that the shape of the distribution of ∆form is more like a truncated
zero-mean Lorentzian distribution. The shape of the truncated Lorentzian
distribution is plotted by the dashed curve in Fig. 5.3.

Figure 5.3: Example of the numerically calculated distribution of ∆form.

It is useful to set a criterion by which to decide whether the interferogram
is distorted or not. The numerical calculations show that standard deviation
σ∆ of the distribution of ∆form is increasing with increasing spectral width
FWHM(λ). A suitable decision criterion for an undistorted interferogram
seems to be the condition that the standard deviation σ∆ does not exceed
one-third of δz as defined by Eq. (5.15) for the given roughness σh and
intensity Iout obj. In this way, the limit spectral width FWHMlim can be
calculated.

If FWHM(λ) = FWHMlim, the numerical calculations show that the
probability that the difference ∆form exceeds the theoretical value δz is about
0.018. If the distribution of ∆form had a Gaussian form, the probability
would be 0.0027.

The limit spectral width FWHMlim is numerically calculated for λ0 =
820 nm and various values of roughness σh and intensity Iout obj. The result
is presented in Fig. 5.4. The marks in Fig. 5.4 indicate the numerically
calculated values of the limit spectral width FWHMlim. The dashed curves
represent the values calculated according to the formula

lc lim = 4

√
〈Iout obj〉
Iout obj

σh. (5.17)

The relation between the limit coherence length lc lim and the limit spec-
tral width FWHMlim is expressed by Eq. (5.3).
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Figure 5.4: Limit spectral width FWHMlim as the function of roughness σh.
The marks indicate the numerically calculated values. The dashed curves
represent the values calculated according to Eq. (5.17).

The numerically calculated values of the limit spectral width FWHMlim

tend, approximately, to the values given by Eq. (5.17) as follows from
Fig. 5.4. The limit spectral width is increasing with intensity Iout obj and
decreasing with roughness σh. The area that is enclosed by the calculated
values of the limit spectral width FWHMlim, the horizontal axis, and the
dotted line σh = λ0/4 (the approximate limit of the optically rough surface)
represents the application range where undistorted interferograms may be
expected. The described application range is larger for the speckles with a
higher intensity Iout obj.

This corresponds to experience with practical measurements as shown
in Fig. 5.2 . Two measured interferograms for λ0 = 820 nm and FWHM(λ)
= 44 nm are presented. The measured object is roughness standard (N7
Rugotest number 3) with Ra = 1.6 µm (Ettl et al., 1998). For a Gaussian
height distribution, it holds Ra = (2/π)1/2σh ≈ 0.8σh (Lehmann, 2002).
Thus σh takes, approximately, the value of 2.0 µm. The values of the ratio
Iout obj/〈Iout obj〉 are 1.2 and 4.5 for the interferograms shown in Figs. 5.2 (a)
and Fig. 5.2(b), respectively.

The limit spectral width is equal to 24 nm for the interferogram in
Fig. 5.2(a). The interferogram illustrated in Fig. 5.2(a) is distorted because
the spectral width (44 nm) of the light source exceeds the limit spectral
width (24 nm). On the other hand, the limit spectral width for the inter-
ferogram in Fig. 5.2(b) is 47 nm. In this case, the limit spectral width is not
exceeded by the spectral width (44 nm) of the light source, and therefore
the interferogram illustrated in Fig. 5.2(b) is not distorted. This shows that
the speckles with higher intensity are less sensitive to decorrelation. How-
ever, the speckles with higher intensity have a lower occurrence probability
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according to the intensity distribution (Goodman, 1984).

Figure 5.5 shows the measurement uncertainty numerically calculated
from the envelope maximum (denoted as δXz) and the measurement uncer-
tainty numerically calculated from the center of gravity (denoted as δGz) of
the interferogram’s envelope as a function of spectral width FWHM(λ) for
λ = 820 nm, σh = 1.2 µm, and Iout obj = 〈Iout obj〉.

As expected, both measurement uncertainties δXz and δGz take almost
the same value for small spectral widths FWHM(λ). Because the interfero-
grams are undistorted for small values of FWHM(λ). The value δz = δXz =
δGz is given by Eq. (5.15) and is indicated by the horizontal dashed line in
Fig. 5.5. If the spectral width is increased, both measurement uncertainties
δXz and δGz start to differ from each other. The reason for this difference
is that for very short coherence lengths (lc < 1µm) δXz maintains approxi-
mately the same value as before, whereas δGz tends to zero. The value of
the limit spectral width FWHMlim is indicated by the vertical dotted line in
Fig. 5.5. It can be seen that for this spectral width the difference between
uncertainties δXz and δGz starts to increase.

Figure 5.5: Measurement uncertainty as function of spectral width
FWHM(λ).

It might seem more advantageous to use just distorted interferograms
when their measurement uncertainty is less than those undistorted. The
problem is that the influence of the rough surface only is taken into account
in the presented theory. Other sources of noise will not allow accurate
measurement of the shape of the distorted interferogram. However, this is
necessary for an accurate coordinate calculation using the center of gravity
method.
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5.3 Summary

Coherence-scanning interferometry has been chosen as an example for calcu-
lating the measurement uncertainty on a rough surface. In this case, surface
roughness is the dominant source of noise. The rough surface leads to the
formation of speckle pattern. Measurement uncertainty is low in bright
speckles and high in dark speckles. High roughness and large width of the
light spectrum lead to the formation of distorted interferograms. Bright
speckles are more resistant to the formation of distorted interferograms.
The content of the chapter draws from the following publications:

[A8] Pavĺıček, P. and J. Soubusta (2003). Theoretical measurement uncer-
tainty of white-light interferometry on rough surfaces. Applied Optics
42(10), 1809–1813.

[A9] Pavĺıček, P. and O. Hýbl (2008). White-light interferometry on rough
surfaces—measurement uncertainty caused by surface roughness. Ap-
plied Optics 47(16), 2941–2949.

[A10] Pavĺıček, P. (2008). Influence of surface roughness on the measurement
uncertainty of white-light interferometry. In SPIE 7141, pp. 71410R.
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Chapter 6

Conclusion

The measurement uncertainty of optical 3D sensors depends on whether the
surface of the measured object is optically smooth or rough. The property
of a surface to be optically smooth or rough depends on the mechanical
properties of the surface and on the parameters of the optical measuring
system. In the presented model, the mechanical properties of the surface
are the mechanical roughness and the correlation length. The parameters of
the optical measuring system are the wavelength of the used light and the
aperture of the imaging system.

A surface behaves as optically rough if the roughness is large and the
correlation length and aperture are small. An optical sensor operates in
”rough surface mode” or ”unresolved mode”. As the roughness decreases
and the correlation length and aperture increase, the surface becomes opti-
cally smooth. The optical sensor then operates in ”smooth surface mode”
or ”resolved mode”. When switching from ”unresolved mode” to ”resolved
mode”, the sensor goes through a transient range.

An optical sensor can operate in ”resolved mode” even if the mechanical
roughness is high. This is the case if the dimensions of the resolution cell of
the optical system are less than the correlation length of the surface.

Whether the sensor operates in ”resolved mode” or ”unresolved mode”
is important in terms of signal formation. The way the signal is generated
depends on the dominant noise. Thus, the dominant type of noise is de-
cisive in determining the measurement uncertainty of a particular sensor.
Cramér–Rao inequality proves to be a suitable tool for calculating the mea-
surement uncertainty [A1–A3]. For shot noise, Cramér–Rao inequality takes
on a simple form [A4].

We assume that the shot noise is the dominant noise source for opti-
cal sensors operating on the optically smooth surface [A7]. The measure-
ment uncertainty of several simplified model methods has been calculated
by means of the Cramér–Rao inequality [A5].

It shows up that the measurement uncertainty of the measurement me-
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thods on the optically smooth surface depends on the wavelength of used
light, on the number of photons used for the measurement, and on the
geometric arrangement of the measurement setup [A6].

One physical principle is common to all studied methods (laser deflec-
tometry, classical interferometry, optical focus sensor). The product of the
measurement uncertainty with the standard deviation of normalized spectral
density cannot fall below a minimum achievable value. This value depends
only on the number of photons used for the measurement. The condition
to achieve the minimum value of the product is that the amplitude function
must be real up to a multiplicative factor. The existence of the uncertainty
product implies that a low measurement uncertainty can be achieved at the
cost of large standard deviation of the normalized spectral density [A5].

For optical sensors that measure on optically rough surfaces, shot noise
does not play a major role, one of the other sources of noise becomes domi-
nant. The measurement uncertainty of coherence scanning interferometry
has been given as an example for the measurement on optically rough sur-
faces. The influence of surface roughness is the dominant noise source in
this case [A8].

Because of the great complexity, most of the problem has been solved nu-
merically. The numerical calculations have shown that coherence-scanning
interferometry on optically rough surface can operate in two regimes. These
are: the regime with an undistorted interferogram and the regime with a
distorted interferogram [A9]. The boundary between them is defined by the
“limit spectral width” [A10]. If the spectral width of the light source is
smaller than the limit spectral width, the interferogram is not distorted.
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Häusler, G., P. Ettl, M. Schenk, G. Bohn, and I. Laszlo (1999). Limits of
optical range sensors and how to exploit them. In T. Asakura (Ed.), In-
ternational Trends in Optics and Photonics ICO IV, pp. 328–342. Berlin:
Springer Verlag.
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[A5] Pavĺıček, P. and M. Pech (2016). Shot noise limit of the optical 3D
measurement methods for smooth surfaces. Measurement Science and
Technology 27(3), 035205.
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