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jednotlivými fotony

Mgr. Petr Marek, Ph. D.

Habilitačńı práce
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Chapter 1

Introduction

By the end of the 19th century, the common sentiment was that nearly all

the mysteries of physics were already unraveled. True, there were few in-

consistencies in need of ironing out, but after that was done there would be

nothing left to do but perform increasingly precise measurements of funda-

mental constants. Or so was thought. One of these minor quirks was the

spectrum of blackbody radiation and its continuous and stubborn refusal to

fully match the existing theoretical models. These differences were finally

reconciled by introduction of photons [1] which ultimately lead to a com-

pletely new field, a completely new physics - quantum physics. Originally,

the photons were an abstract concept used to model statistical properties

of light. Today, more than a century later, we are in an era in which in-

dividual photons and their nonlocal properties can be observed and even

manipulated with aims of accomplishing a number of intriguing goals.

The research field with the ambition to harness the spooky nature of

quantum systems in order to devise new and powerful technologies is called

quantum information processing (QIP) and it is an amalgam of physics

and information theory. So far, the investigation revealed the exciting pos-

sibilities of quantum simulation [2, 3], quantum computation [4, 5, 6, 7],

quantum communication [8, 9, 10], and quantum metrology [11, 12], but

other paradigm shifting discoveries may be revealed in the future. All of

the aforementioned applications require, as one of the elementary build-
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ing blocks, quantum nonlinearity which is incompatible with classical and

semi-classical descriptions. The nonlinear behavior can be found in natural

systems, but it is unfortunately fairly weak and vulnerable to decoherence.

Reliably providing desired nonlinear behavior is therefore one of the bottle-

necks holding back the development of quantum technologies.

Quantum technologies need to be firmly rooted in real physical systems

and many experimental platforms are investigated for this purpose. Pho-

tons or, more formally, traveling light are one of the analyzed possibilities.

Light is a natural candidate for quantum connection [13] and the associ-

ated information processing. Quantum states of light, either of individual

photons or more complex multiphoton fields, can be straightforwardly gen-

erated already with the present day technology. These states can be also

effectively manipulated by linear optical schemes and linear squeezing, and

measured by homodyne or single photon detectors [14, 15, 16]. Detectors

resolving exact numbers of photons are not yet easily accessible but they are

a focus of intensive investigation [17, 18]. One of light’s main advantages

is its resilience to noise. This is related to the ease with which a mode of

light can be prepared in what is effectively the zero temperature state and

isolated from a noisy environment during propagation. However, the nonin-

teractibility of light, responsible for this robustness, is also the reason why

realizing nonlinear operations for light is a fairly challenging task.

Currently, the most feasible way of obtaining a nonlinear behavior for

modes of traveling light lies in inducing it through a suitable measurement.

Detectors of discrete quantum qualities, such as numbers of photons, are

inherently nonlinear and, when used on a part of an entangled multi-mode

field of light, are capable of probabilistically projecting the remaining state

into a nonlinear one [19]. This is the traditional way of generating individual

photons, but it was also used for creating of more complicated nonlinear

states [20] and implementing quantum nonlinear operations [21].

This thesis expands upon this basic principle and shows several different

kinds of nonlinearity which can be constructed at the single photon level.

The theoretical proposals of the protocols form the the sturdy basis of the

thesis. However, from the very first phase of their conception, they were
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CHAPTER 1. INTRODUCTION

always motivated by the experimental reality and the tools available. That

is why a significant portion of the mainly theoretical thesis is composed of

reports of the experiments which took the proposals and turned them into

real life devices. The main results of the thesis can be separated into three

thematically distinct topics, each one summarized in a separate chapter.

In chapter 3 we will focus on a specific example of quantum nonlinear-

ity - the noiseless amplification. We will introduce the problem and present

specific proposals for implementation [A1]. We then demonstrate their feasi-

bility by showcasing the experimental results obtained in collaboration with

Max Planck Institute for Science of Light in Erlangen [A2, A3]. We will part

with the chapter by abstracting the noiseless amplification and pondering

its consequences for probabilistic measurements of quantum phase [A4].

In chapter 4 we will abandon the specific example and consider the

broader scope of quantum information processing. We will show several

ways in which we can manipulate a quantum state of light in an arbitrary

way. Specifically, we will show a feasible set of elementary logic gates re-

quired for processing of superposed coherent state qubits [A5] and discuss

the experimental results obtained in collaboration with Danish Technical

Institute in Lyngby [A6]. We then present a set of elementary gates suitable

for a general transformation of optical field [A8] and discuss the nature of

universal quantum resources required by these operations [A7]. As in chap-

ter 3, all the operations considered in this chapter are probabilistic. This

makes them unsuitable for universal computation and other protocols aim-

ing for speed-up, but they are well fit for preparation of quantum states and

tests of other tools in the quantum optical toolbox [16, 36].

In chapter 5 we will show how to implement a nonlinear quantum gate

deterministically. Specifically, we will propose a realization of the cubic gate

[A9, A12], which is the lowest order nonlinear gate sufficient for universal

processing of quantum information. The key element required by the gate is

a nonlinear quantum state used as a source of the nonlinearity. We will show

that the required state can be constructed, photon by photon, with help of

suitable measurements. We will analyze the experimental results obtained

in collaboration with the University of Tokyo [A10, A11] and show that the
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required nonlinearity is present in the generated states despite the existing

experimental imperfections.
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Chapter 2

Nuts and bolts of quantum

optics

Quantum information processing with quantum optics can be approached

from two different angles. In the first one, the relevant physical systems are

individual photons, which can be found in distinctive modes and labeled

accordingly. The total number of these modes1, together with the number

of photons, then determine the dimension of the Hilbert space used for de-

scribing the system. This dimension can be arbitrarily large, but it is always

finite and the total number photons of is always limited and well known.

This is the historically older Discrete Variable (DV) approach [23], which

has been already used for realization of many fundamental tests of quantum

mechanics [24, 25, 26, 27], as well as for proof-of-principle test of quantum in-

formation protocols [6, 28] and even first commercially available devices [30].

The strength of the DV approach lies in the natural self-correcting ability of

the systems - a random loss of a photon can be easily detected and therefore

does not introduce errors. However, it is not without weaknesses. There

are experimental limits as to how many photons can be utilized at the same

time and what operations can be realized by the available detectors. For

example, quantum teleportation [31], the quintessential quantum protocol

which plays role in many advanced applications, can not be deterministically

1polarization, spatial, temporal, and so on
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realized without nonlinear operations which are currently unavailable in the

DV quantum optics [32].

While the DV theory is governed by the algebra of finite Hilbert spaces,

the DV experiments are fully determined by the available tools: sources of

single photons, single photon detectors, and quantum operations preserv-

ing photon numbers. However, there is also a plethora of quantum states

and operations which have no place in DV quantum optics, because they

violate its basic assumptions. These tools are the focus of the Continuous

Variables (CV) quantum optics which studies states of the radiation modes

instead of the photons. Each of the distinct modes can contain an arbitrarily

large number of photons and is therefore described by infinite dimensional

Hilbert space. Aside from the photon number, the light in the modes can be

also described by its electric and magnetic intensities which are continuous

quantities - hence the name, CV.

The main benefit of the CV approach is that it has naturally broader

range of experimental tools at its disposal. In addition to the DV tools, it

can employ coherent and squeezed states of light, high efficiency homodyne

detection, and squeezing [33]. Many quantum protocols can be realized both

in CV and DV and the CV implementation is often beneficial [34, 35]. For

example, CV quantum teleportation can be realized deterministically [22]

and it can be even used for transmission of a DV state [36]. In this work

we focus on quantum information processing with CV quantum optics and

show realization of several interesting protocols.

In CV quantum optics, a single mode of field of light is best modeled by

a quantum harmonic oscillator [33, 37]. The Hamiltonian of such the system

is rather simple,

Ĥ = ~ω
(
â†â+

1

2

)
, (2.1)

where ω is the frequency, ~ is the Planck constant and â is the photon

number annihilation operator. In the following we will be mainly interested

in fundamental properties of the system; we will therefore take some liberties

and simplify the description a little bit. We shall consider ~ = 1 and define
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CHAPTER 2. NUTS AND BOLTS OF QUANTUM OPTICS

quadrature operators

x̂ =
â+ â†√

2
, p̂ =

â− â†√
2i

(2.2)

with commutation relations [x̂, p̂] = i. The physical interpretation of these

operators is related to electric and magnetic intensities of the electromag-

netic field, but in our description they will be dimensionless and interchange-

able. Their main purpose is to enable different ways in which we can describe

the harmonic oscillators under our consideration.

The most complete knowledge of a quantum state is given by its quan-

tum state vector |ψ〉 if it is pure and quantum state density operator ρ̂ when

it is mixed. However, there are several ways to represent the quantum state

and one of the key skills used in CV quantum information lies in choosing

the representation best suited for any given task and flexibly changing be-

tween them when needed. The Fock representation expresses the state in the

term of photon number states |n〉 which are the eigenstates of the photon

number operator n̂ = â†â. Similarly, the quadrature representation employs

eigenstates of quadrature operators x̂ and p̂, always either one of them or

their linear combination. This is the consequence of their dual nature aris-

ing from their noncommutativity. Representation by Wigner functions is

different, because it attempts to combine the incompatible x and p repre-

sentations and describe the quantum state of a single mode of radiation by

a bivariate real function defined as

W (x, p) =
1

2π

∫ ∞

−∞
ei2pq〈x− q|ρ̂|x+ q〉dq. (2.3)

This function resembles a joint probability distribution of two classical ran-

dom variables, but it has several differing features arising from the non-

commutative nature of the two quantum variables. Most importantly, it

can attain negative values. Such values have no place in classical theory of

probability and states exhibiting them can be considered distinctively quan-

tum or, as they are oftentimes called, non-classical [38]. In retrospect, it is

not surprising that these states can be only produced by quantum nonlinear
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operations.

Related to this distinction, tools of quantum optics can be separated

into two broad categories: Gaussian and non-Gaussian. Gaussian quantum

states have Wigner functions proportional to multivariate Gaussian distri-

bution, Gaussian operations transform Gaussian states into Gaussian states

and Gaussian measurements project on Gaussian eigenstates. The Gaussian

resources play a significant role in quantum optics experiments, because they

can be straightforwardly realized. Passive linear optics elements, together

with displacement [39] and the squeezing operation, can be used to imple-

ment an arbitrary Gaussian operation [40] and, by extension, used to prepare

an arbitrary Gaussian state. The homodyne detection [33], which can be

realized with high quantum efficiency, is then the quintessential Gaussian

measurement.

Unfortunately, the ease with which Gaussian tools can be processed both

theoretically and experimentally comes at a cost. Many desirable quantum

protocols, such as quantum computation [41] or distillation of quantum en-

tanglement [42, 43, 44], have been shown to absolutely require non-Gaussian

elements to work. This lead to great focus being devoted to obtaining these

tools, with differing measures of success. Non-Gaussian operations can be

realized in some naturally nonlinear media, such as those exhibiting Kerr

nonlinearity [45]. Unfortunately, in practice the nonlinearity in the materials

presently available is too weak to be applied to weak signals 2 employed in

quantum information protocols. Single photons prepared on demand would

be a great source of non-Gaussian states but, even though the technology

continuously progresses [46], they are not fully reliable yet. Similar situa-

tion is with quantum memories, which have the potential, but still lack the

necessary efficiencies [47, 48].

In the end, the most feasible way of obtaining non-Gaussian resources

for CV quantum information processing with light currently lies in measure-

ment induced operations. This is enabled by the availability of avalanche

photodiodes serving as on-off detectors, discerning either presence or ab-

sence of light [20]. In quantum mechanical terms, the two measurement

2with at most few photons on average
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CHAPTER 2. NUTS AND BOLTS OF QUANTUM OPTICS

Figure 2.1: Conceptual description of a measurement induced operation.

outcomes are related to POVM elements

Π̂off = |0〉〈0|, Π̂on = 1̂− |0〉〈0|. (2.4)

The ‘on’ element confirming presence of photons is non-Gaussian and can be

therefore used for realization of non-Gaussian operations and preparation of

non-Gaussian states.

2.1 Measurement induced operations

Measurement induced operations are enabled by one of the basic paradigms

of quantum mechanics - observing a quantum system changes it. This is the

principle which students of quantum mechanics usually encounter in their

first lesson when discussing the Stern-Gerlach experiment. However, the

detectors of quantum optics are based on absorption and therefore destroy

the system they measure. Measurement induced operations therefore require

an additional component - an ancillary system which interacts with the

signal and is measured afterwards. This process, illustrated in Fig. 2.1,

formally transforms the density matrix of the signal as:

ρ̂s →
Tra[Ûsaρ̂s ⊗ ρ̂aÛ †saΠ̂a(q)]

Tr[Ûsaρ̂s ⊗ ρ̂aÛ †saΠ̂a(q)]
. (2.5)

The subscripts s and a denote the signal and the ancilla, respectively, uni-

tary operator Ûsa represents the coupling between the systems, and Π̂a(x)

marks the POVM element related to the measurement outcome q. As a con-

sequence, the state of the signal is altered based on the particular measure-
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Figure 2.2: Schematic depiction of probabilistic implementation of photon
subtraction (a) and photon addition (b). BS - beam splitter, NOPA - non-
degenerate optical parametric amplifier, APD - avalanche photo diode.

ment result. We now have the option to only keep the states corresponding

to certain measurement outcomes, which results in a probabilistic operation,

or to keep all the different situations and treating the resulting state as a

statistical mixture with weights equal to the individual probabilities of suc-

cess. In this case, the information gained by the measurement can be used

to drive a feed-forward loop which completes the operation by erasing some

of the back-action of the measurement [49].

In quantum optics, this elementary principle has been employed towards

realization of a wide range of quantum operations, both probabilistic and

deterministic. Possibly the most prominent probabilistic operation is the

approximation of the photon number annihilation operator â, which can

be realized by mixing the signal with a vacuum on a weakly transmitting

beam splitter and then measuring the reflected light with the avalanche

photo-diode, see Fig. 2.2a. When the signal is in a pure state |ψ〉, the full

operation can be approximatively written as

|ψ〉s|0〉a → 〈1|a(1 + εâsâ
†
a)|ψ〉s|0〉a ∝ âs|ψ〉s. (2.6)

We have written the unitary operator for the beam splitter, an operation

with effective Hamiltonian Ĥ = −iε(âsâ†a − â†sâa), in the form of the first

order Taylor expansion, because we assume the coupling ratio ε to be small.

Thanks to this approximation, we can also consider the ‘on’ POVM element

(2.4) to be the projector |1〉s〈1|, which allows us to preserve the purity
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CHAPTER 2. NUTS AND BOLTS OF QUANTUM OPTICS

of the state. In the end, the subtraction operation is achieved with success

probability PS = ε2〈ψ|sâ†sâs|ψ〉s, which strongly depends on the signal state.

For example, for the vacuum state it is zero - a logical conclusion of the

inability to remove photons from a state which has none. Photon subtraction

realized in this manner has been originally suggested as means for generation

of arbitrary quantum states [50] and realization of arbitrary operations [51].

The first experimental realization then demonstrated its ability to transform

a Gaussian squeezed state of light into a non-Gaussian state resembling a

superposition of coherent states [20], coining its upcoming role as the most

prevalent source of non-Gaussian behavior in quantum optics.

Photon addition operation can be realized in a very similar manner by

replacing the beam splitter with a Nondegenerate Optical Parametric Am-

plifier (NOPA) [21], see Fig. 2.2b. This operation, characterized by Hamil-

tonian Ĥ = −iε(â†sâ†a − âsâa) and widely used for generation of entangled

photon pairs, can add a single photon to both the signal and the ancillary

mode. A positive detection outcome of the ancilla measurement then con-

firms implementation of the addition. At the first sight, photon addition

may seem to be similar in effect to photon subtraction. From the point of

view of non-Gaussian features it is, however, much stronger. In contrast to

photon subtraction, which requires states with certain properties [38] to cre-

ate non-Gaussian states, photon addition produces them always [52]. The

cost of this, however, is lower experimental feasibility arising from the need

of injecting the signal into an active medium and mode-matching it with the

pump.

As far as deterministic measurement induced operations go, the most

prevalent examples in this category are actually Gaussian. However, this

does not diminish their usefulness as the Gaussian operations are necessary

for CV quantum information processing and some of them can not be applied

directly [53]. An example of such operation is the squeezing, operation which

reduces fluctuations in one quadrature at the cost of increasing fluctuations

of the other, represented in Heisenberg picture by transformation relations

x̂′ = gx̂, p̂′ =
1

g
p̂. (2.7)
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It is important to note that the aforementioned difficulty is related to squeez-

ing of an arbitrary unknown state. Squeezing a vacuum state, amounting to

preparation of the squeezed vacuum state, is a task routinely implemented

in quantum optics laboratories [54, 55]. Unfortunately, the process involves

active media in optical resonators with low in-coupling and out-coupling ef-

ficiencies, making it unsuitable for unknown quantum states. The available

squeezed vacuum states can be fortunately used as part of the measurement

induced scheme in order to impart the squeezing onto an arbitrary quantum

state. Within the scheme shown in Fig. 2.3, the signal s mixes with the

ancilla a, prepared in the squeezed vacuum state, on a beam splitter with

transmissivity T . In Heisenberg picture this transforms the quadrature op-

erators as

x̂′s =
√
T x̂s +

√
1− T x̂a p̂′s =

√
T p̂s +

√
1− T p̂a,

x̂′a =
√
T x̂a −

√
1− T x̂s p̂′a =

√
T p̂a −

√
1− T p̂s. (2.8)

Quadrature p̂′a of the ancillary mode now gets measured by the homodyne

detection, producing a classical value q =
√
T p̂a−

√
1− T p̂s. This value can

be used to displace the signal as

x̂′′s = x̂′s =
√
T x̂s +

√
1− T x̂a

p̂′′s = p̂′s −
√

1− T√
T

q =
1√
T
p̂s. (2.9)

We can see, that apart from the term related to x̂a, the relations perfectly

follow the ideal relations for squeezing with transmissivity corresponding

to the new squeezing parameter. The squeezing of the ancillary mode now

comes into play - it manifests as reduced fluctuations of the x̂a quadrature,

meaning that for large squeezing we can use approximation x̂a → 0. The

inline squeezing operation, which has been applied to a range of both Gaus-

sian and non-Gaussian states [56, 57], then serves, together with passive

linear optics, as a resource from which all other Gaussian operations can be

constructed [40, 58, 59].

These are but few examples of the measurement induced operations used
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CHAPTER 2. NUTS AND BOLTS OF QUANTUM OPTICS

Figure 2.3: Measurement induced realization of the squeezing operation. BS
- beam splitter, HD - homodyne detection

in contemporary quantum optics, but they nicely illustrate the basic benefits

of the paradigm. Namely that resources needed for quantum operations can

be drawn both from the measurements and the ancillary states. In the

following chapters we will take this basic concept and expand it to several

possible applications.
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Chapter 3

Noiseless Amplification

Amplification is a central concept in classical communication. There, infor-

mation is being carried by signals which tend to deteriorate during propa-

gation. Long distance communication therefore requires repeater stations,

which employ amplification to compensate the losses and other channel im-

perfections. Similar issues arise in quantum communication and it is in-

tuitive to adapt similar approaches to combat them. Unfortunately, the

actual realization of practical quantum amplification is not straightforward

as it faces quite a number of specific difficulties.

The main difference between classical and quantum amplification lies in

the nature of the amplified entity. The classical signal can be, under realistic

conditions, completely measured and the information it carries can be fully

extracted. Any classical amplifier can be therefore imagined as a device

which measures the signal and then prepares a new, stronger but otherwise

identical one. On the other hand, quantum communication aims to transmit

quantum states, which have the fundamental property that they carry more

information that can be extracted by a single measurement. This is the very

feature which enables the quantum key distribution protocols [30, 60], but it

also largely prevents amplifiers based on measurement and re-preparation.

Quantum amplifiers therefore need to be actively transforming the quan-

tum state of the signal. While doing so, they must adhere to the fundamental

constraints imposed by quantum physics, the most limiting one being the
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no-cloning theorem [61], which states that it is impossible to take an un-

known quantum state and create, in any way, several copies of it. After all,

if the main purpose of amplification is to make information carried by the

signal more accessible, creating several copies of the signal works quite well.

Quantum amplification therefore always needs to come with drawbacks,

which ensure that the operation is not too good. As an example, let us

consider amplification of a single mode of light. Such amplification could be

represented by the following transformation of the quadrature operators of

the field:

x̂′ =
√
Gx̂, p̂′ =

√
Gp̂, (3.1)

where the parameter G is the amplification gain. However, transforma-

tion relations (3.1) do not preserve the fundamental commutation relations

[X,P ] = i and therefore do not represent any physical operation. Operation

(3.1) can not exist. However, we can transition into the realm of possibility

by adding some additional terms. Transformation relations

x̂′ =
√
Gx̂+

√
G− 1x̂a (3.2)

p̂′ =
√
Gp̂+

√
G− 1p̂a (3.3)

satisfy the commutation relation under the assumption that operators x̂a

and p̂a represent quadrature operators of an ancillary system. Transforma-

tion relations (3.2) are used to describe the non-degenerate optical para-

metric amplifier (NOPA), which has been long used in the area of quantum

optics for generation of entangled states of light [62], both discrete states

of entangled photons [6, 28, 31] and continuous two mode squeezed state

[22, 36]. For our purposes it is important that the operation adds photons

into the amplified mode, but for each photon added in this way, a photon

is added also into the ancillary idler mode. This creates correlations, even

entanglement, between the signal and the idler modes and when the idler

mode is discarded, part of these correlations turns into noise. And this noise

is the cost we pay for the amplification.

We can illustrate this on the example of amplifying a coherent state of
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CHAPTER 3. NOISELESS AMPLIFICATION

Figure 3.1: Illustration of amplification for coherent states of light. The
circles schematically demonstrate profile of the states’ Wigner functions in
phase space.

light. In the phase space representation, coherent state |α〉 is represented

by its Gaussian Wigner function in the form

Wα(x, p) =
1

π
e−(x−αr

√
2)2−(p−αi

√
2)2 , (3.4)

where α = αr + iαi. In the following we will always consider α > 0 - this

has no bearing on the validity of the presented results and it simplifies their

description considerably. In phase space a coherent state can be represented

by a circle where its radius corresponds to the uncertainty in measuring

x̂ or p̂. It does not matter which one; the fluctuations are symmetrical.

The amplification is schematically illustrated in Fig. 3.1. The important

realization is that even though the amplification increases the amplitude,

which is represented by displacement of the state disc, it also increases the

respective fluctuations, represented by its change in size. What is even more

unfortunate is that from the point of view of information carried by the state,

the amplification did make the situation worse - the extra fluctuations cancel

out any improvement brought in by the amplification of the amplitude.

Within this example it can be easily seen that in the Schröedinger picture

the ideal operation would take a coherent state |α〉 and transform it into

another coherent state |gα〉 with g > 1. The operation would be therefore

represented by operator

gn̂ =

∞∑

k=0

gk|k〉〈k|. (3.5)
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The operator (3.5) is unbounded, which is the consequence of the ever

increasing values of coefficients gk. This means that the operator is non-

physical and can not be realized. Or, rather, it can not be realized in its ideal

form. In fact, the operator is unbounded only when we consider an infinite

dimensional Hilbert space. However, in all the potential scenarios in which

we deal with quantum amplification, the states of interest are weak, having

on average only few quanta of energy. This effectively limits the Hilbert

space they live in and enables the noiseless amplification approximatively.

It was first realized in [63] that very weak coherent states, which can

be effectively represented as a superposition of one and no photons, |α〉 ≈
|0〉 + α|1〉, can be used in a quantum scissors protocol to generate another

superposition, |0〉+gα|1〉, which closely resembles the desired amplified state

if g|α| � 1. The key feature which enables the noiseless amplification is its

non-unit probability of success. There is still a cost to the amplification, but

this time it does not manifest as a reduction of quality of the amplified state,

but rather as a reduction in the success rate. With the realization that in

practical scenarios noiseless amplification is not impossible in principle we

can start looking for other effects which can be used to implement it.

3.1 Noise-powered amplification

Interestingly enough, the amplification can be also constructed from the

elementary operators of quantum optics - the annihilation and the creation

operators â and â†. These operators are elementary in the theoretical sense,

they are the cornerstone for theoretical description of the optical fields.

Their experimental realization is made difficult by the fact that they, in their

ideal versions, represent non-physical operations. They can be, however,

realized approximatively by employing the nonlinearity of detectors capable

of resolving individual photons [21, 50, 51, 52].

When the creation and the annihilation operators are applied in this
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order to a weak coherent state they transform it as

ââ†
(
|0〉+ α|1〉+

α2

2
|2〉+ ...

)

= |0〉+ 2α|1〉+
3α2

2
|2〉+ .... (3.6)

If the coherent amplitude is small enough, the state closely resembles the

coherent state amplified with gain g = 2. In comparison with the quantum

scissors scheme [63], the scheme has the disadvantage of fixed amplification

gain, but the benefit of not throwing away all the higher Fock terms, which

means it can provide a meaningful improvement even if the coherent ampli-

tude is not negligible compared to one [A1]. We can also view the operation

as implementing operator 1 + n̂, which is close to the first order Taylor ex-

pansion of an ideal noiseless amplification operator en̂. This view can be

further expanded into involving other more complicated polynomials of the

number operator n̂ [64, 65].

Interestingly enough, the first step of the protocol, the coherent addition

of photon, can be in certain cases, such as for amplification of coherent states,

replaced by addition of incoherent photons. These photons, also appearing,

for example, during the Gaussian amplification (3.2), are most often treated

as noise. The process of adding them is classical and it is best described as

random displacement of the field:

|α〉〈α| →
∫

Θ(β)D̂(β)|α〉〈α|D̂†(β)d2β, (3.7)

where D̂(β) is the displacement operator [37] and Θ(β) is a classical prob-

ability distribution of the complex displacing amplitudes. The second step

of the operation, the photon subtraction, then transforms the state into

∫
Θ(β)|α+ β|2|α+ β〉〈α+ β|d2β∫

Θ(β)|α+ β|2d2β
, (3.8)

where the denominator represents the probability of success of the operation

and we took advantage of coherent states being eigenstates of the annihila-
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Figure 3.2: Phase space illustration of the noise powered amplification of a
coherent state of light

tion operator. The subtraction of photons acts as a probabilistic filter. Some

coherent states from the initial mixture (3.7) have higher probability of be-

ing post-selected and are thus over-represented in the transformed state.

This is characteristic for the states with the highest amplitudes, which hap-

pens when the phase of the random displacement aligns with the unknown

phase of the initial coherent state. See Fig. 3.2 for illustration of the effect.

Increasing the number of subtractions makes the filtering more strict, which

improves the amplification at the cost of the success rate.

The particular form of Θ(β) depends on the mechanism used for adding

the noise. The most common form of noise, which naturally appears during

the process of Gaussian amplification (3.2), is represented by thermal chaotic

light with

Θ(β) =
1

πNTH
e
− |β|2
NTH . (3.9)

Parameter NTH represents the mean number of added photons and quanti-

fies the strength of the added noise. For any particular scenario, the amount

of noise can be optimized in order to achieve the best performance. How-

ever, there are other forms of noise which can be considered. In fact, using

random displacement operations, any thinkable noise distribution can be

achieved in experimental scenario. The only condition, which needs to be

satisfied for preventing bias, is phase insensitivity. As an example, one pos-

sible way of adding noise consists of performing displacements with fixed
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amplitude |β| = √ND and random phase;

Θ(β) =
1

2π
δ(|β| −ND), (3.10)

where δ() denotes the singular δ-function.

For evaluating the performance of the amplification we need to introduce

quantitative figure of merits. Phase is an important property of coherent

states and it is often used for encoding information. It therefore makes

sense to see how well any given state can carry a particular phase value

and subsequently reveal it in a measurement [66]. The best possible mea-

surement which can be imagined is the so called canonical measurement of

phase [66, 67, 68]. It can be mathematically described as a projection on

idealized phase states |θ〉 =
∑∞

k=0 e
iθk|k〉. These phase states are not nor-

malized, which makes them similar to eigenstates of continuous operators

(such as position and momentum), but they are also not orthogonal. For

any quantum state ρ̂ the results of the canonical phase measurement can be

characterized by probability distribution P (θ) = Tr[ρ̂|θ〉〈θ|] - the canonical

phase distribution. The phase distribution for coherent state has a single

peak and it is symmetrical around it, meaning that the encoded phase can

be measured without bias. The quality of the phase encoding is given by

the width of the peak, which can quantified by the phase variance [67]

Vµ =
1

|µ|2 − 1, where µ =

∫ π

0
eiθP (θ)dθ. (3.11)

We have tested the noise powered amplification experimentally [A2]. Co-

herent states with initial amplitude |α|2 = 0.186 were amplified by addition

of thermal noise with 〈NTH〉 = 0.15 and subsequent photon subtraction.

The resulting phase distribution and phase variances of the amplified states

relative to the number of subtracted photons is shown in Fig. 3.3. We can

see that even though the initial addition of thermal noise reduces quality

of the state, subsequent photon measurements improve it beyond the initial

level for both the theoretical predictions and the experimental tests.

Finally, the noise powered amplification can be also considered for per-
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(a) (b)

Figure 3.3: (a) Phase distributions for the initial coherent state and different
levels of amplification. (b) Phase variances for different levels of amplifica-
tion. Experimental data of [A2].

fect cloning of coherent states. Laws of quantum physics prevent creation

of perfect copies [61]. Copies can be created, but they are always burdened

by noise [69, 70]. This is very similar to the trade-offs for amplification,

especially for coherent states for which cloning is realized by amplification

followed by splitting. This also means that, with help of noiseless amplifica-

tion, coherent states can be cloned almost perfectly, at the cost of reduced

success rate. We experimentally tested this possibility by attempting to use

the noise-powered amplifier to generate perfect copies of a coherent state

with unknown phase [A3]. The Wigner functions of the produced states can

be seen in Fig. 3.4 and they clearly show that quality of the copies improves

with the number of subtracted photons and approaches the ideal noiseless

regime.

3.2 Optimal probabilistic measurement of phase

In the previous section we have shown that noiseless amplification can be

used for enhancing phase properties of quantum states. Or, to rephrase

that, that probabilistic operations can be used for increasing precision of

individual phase measurements. Furthermore, we can leave the distinction

between amplification and measurement and simply examine the concept of

probabilistic measurements. This is not the first time it appeared. Methods
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Figure 3.4: Wigner functions of coherent state cloned with help of the noise-
powered amplifier. The white contour symbolizes the ideal clone. Experi-
mental data of [A3].

for unambiguous distribution of quantum states [71] profit from the ability

to pronounce certain measurement results ‘inconclusive’ and provide definite

certain answers in the scenarios in which they do succeed. However, these

methods require a discrete set of states to distinguish and are not directly

applicable to measuring continuous set of phase values. So instead of finding

a single ultimate measurement which measures the phase perfectly, which

is impossible with the exception of zero probability of success, we aim to

quantify the trade-offs between the quality of the phase measurement and

its probability of success.

Extension of the canonical measurement of phase into the probabilistic

regime can be represented by a set of operators Π̂φ, each of them corre-

sponding to a positive detection event of a value φ, and a single operator

Π̂0 representing the inconclusive results. Together these operators form a

positive operator valued measure (POVM). For the canonical determinis-

tic measurement of phase these operators are Π̂
(D)
φ = 1

2π |φ〉〈φ|. Keeping

the pure-state projector structure intact, we can express the probabilistic
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Figure 3.5: (a)Value of µ for optimal probabilistic measurement of phase
for various coherent states. (b) The optimal filters for coherent state with
α = 0.5 and range of success probabilities.

POVMs as

Π̂
(P )
φ =

1

2π
F̂ |φ〉〈φ|F̂ †, Π̂

(P )
0 = 1̂−

∫
Π̂

(P )
φ dφ. (3.12)

Here F̂ =
∑

n fn|n〉〈n|, where |fn| ≤ 1 for all n = 0, 1, ·, is operator diagonal

in Fock space. It is practical to represent the probabilistic measurement by

a filter, transmitting and modifying the quantum state with some limited

probability, followed by the deterministic canonical phase measurement. The

operator F̂ then plays the role of the probabilistic filter and the task of

finding the optimal measurement is reduced to finding the optimal operator

F̂ , which minimizes the phase variance and maximizes parameter µ (3.11).

After the first glance at the problem, one issue immediately becomes ap-

parent. For any quantum state ρ̂, the probability of successful measurement,

P = 1 − Tr[ρ̂Π̂
(P )
0 ] is dependant on the choice of the measured state. The

optimal measurement therefore needs to be tailored to a specific state or to

a class of states. Fortunately, for the class of coherent states it is possible

to find a semi-analytical solution. The results are illustrated in Fig. 3.5. In

Fig. 3.5a we show how the chosen success rate of the optimal measurement

affect the measured phase variance for a set of coherent states. Fig. 3.5b
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then shows the exact form filters which realize the optimal operation for one

particular coherent state.
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3.3 Summary

We have proposed two methods which employ non-Gaussian operations for

probabilistic amplification of quantum signals. We have tested one of these

methods experimentally, first to confirm the ability to concentrate quantum

phase, then to clone coherent states with unknown phase. Finally, we have

used the concept of probabilistic amplification to derive general bounds on

quality of a probabilistic measurement of phase. This chapter is based on

publications:

• P. Marek and R. Filip, Coherent-state phase concentration by quantum

probabilistic amplification, Physical Review A 81, 022302 (2010)

• M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Mar-

quardt, G. Leuchs, and U. L. Andersen, Noise-powered probabilistic

concentration of phase information, Nature Physics 6, 767 (2010)

• C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G.

Leuchs, U. L. Andersen, Probabilistic cloning of coherent states without

a phase reference, Physical Review A 86, 010305(R) (2012)

• P. Marek, Optimal probabilistic measurement of phase, Physical Re-

view A 88, 045802 (2013)
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Chapter 4

Probabilistic Quantum

Information Processing

Processing of quantum information ultimately boils down to transforming

the physical systems which carry it. The preparation and measurement of

the states of the quantum systems are inseparable parts of complete quantum

information protocols, but the actual processing consists of transforming

mostly unknown quantum states in a well defined manner. The lack of

knowledge is an important point: if a pure quantum state is known it can

be turned into any other state by a suitable unitary operation. However,

without the full information some transformations are inaccessible and some

can only be performed with a reduced probability of success. An example

of such quantum operation is the noiseless amplification, which was the

focus of the previous chapter. Amplitude of a single coherent state can be

adjusted at will. But if the phase of the coherent state is unknown, the

amplitude can be increased only probabilistically. The significance of the

probabilistic methods is exactly in that they enable otherwise impossible

operations, which are nevertheless crucial for the rest of the field. State

purification [72, 73] and entanglement distillation [74, 75] protocols are but

two examples of such techniques.

Apart from overcoming the fundamental limitations, probabilistic oper-

ations play a key practical role in quantum information processing with CV
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systems of light. Triggering operations by performing projective measure-

ments in Fock basis is the most efficient source of non-Gaussian features

[20, 21, 52], which are indispensable in reaching many goals of quantum

information science [41, 42, 43, 44].

4.1 Processing with coherent state qubits

States of continuous systems live in an infinite dimensional Hilbert space.

However, that does not mean that all of those dimensions need to be used for

quantum information processing. Formally, any discrete system with limited

dimensionality can be represented by limiting the continuous system to a

certain subspace. For example, the discrete quantum information processing

based on two dimensional quantum systems - qubits - can be emulated by

considering a pair of coherent states with opposite phase, |α〉 and |−α〉, and

using them as the basis states for the processing [76, 77]. In the limit of large

amplitude |α| � 1, these states are almost completely orthogonal and the

representation allows perfect quantum computation. The advantage, these

coherent state qubits have over the older approaches employing qubits en-

coded into polarization of individual photons, lies in the ability to perform

measurements. With access to detectors recognizing specific numbers of

photons, the full Bell-state measurement, crucial for quantum teleportation,

can be implemented only with linear optics elements - a feat impossible for

the polarization encoding [32]. However, there is a cost to this fundamen-

tal feature: the practical difficulty to prepare or manipulate the required

quantum states.

All coherent state qubits c+|α〉 + c−| − α〉, apart from the two basis

states, are non-Gaussian and therefore cannot be prepared by the standard

Gaussian tools. The methods of preparation therefore need to rely on non-

Gaussian elements, which are most often either photon number resolving

measurement [20, A11] or photon number states [78]. Similar difficulty lies

in manipulating the qubit. Even the elementary single mode gates, such as

the phase gate or the Hadamard gate, have to be realized by non-Gaussian

operations, as they can either turn a Gaussian state into a non-Gaussian

28



CHAPTER 4. PROBABILISTIC QUANTUM INFORMATION
PROCESSING

Figure 4.1: (Color online) Schematic representation of the single-mode phase
gate. BS stands for a mostly transmitting strongly unbalanced beam splitter,
APD stands for avalanche photodiode, and D represents the displacement
operation.

(Hadamard gate) or change parity of the state (phase gate). These gates

can be realized deterministically, but the implementation requires a sequence

of weak operations each one consisting of a displacement and subsequent

teleportation [77]. Unfortunately, the current experimental reality is such

that it is not feasible to consider more than one of these steps and, as a

consequence, the complete gates are out of reach.

To work around the issue, we proposed an alternative way to realize

the elementary gates [23] for coherent state qubits [A5]. The gates were

probabilistic, which made them unsuitable for scalable quantum informa-

tion processing, but they were feasible with the contemporary technology.

This allowed them to be used in experiments and help in evaluating the

performance of other parts of the processing circuits [A6].

In order to clearly convey the basic ideas, let us work in the idealized

scenario of perfect superposition of coherent states and perfect photon sub-

traction. The crux of the method lies in realization that the perfect photon

subtraction realizes the annihilation operator and that coherent states are

its eigenstates. Subtracting a photon from a superposition of coherent states

therefore changes their coefficients relative to the amplitudes of the states,

which can be employed for transformative operations.

Specifically, let us consider the single-mode phase gate which is necessary

for single qubit manipulations. The gate should transform the basis coherent
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Figure 4.2: (Color online) Schematic representation of the two-mode con-
trolled phase gate. BSb stands for a balanced beam splitter and D1,2 repre-
sent displacements by γ1,2/

√
2. Numbers 1 and 2 distinguish the two par-

ticipating modes, while labels ‘in’ and ‘out’ describe the input and output
state of the gate.

states as

| ± α〉 → e±iφ/2| ± α〉, (4.1)

and the procedure to implement it is is schematically shown in Fig. 4.1.

An arbitrary qubit in the coherent state basis |ψin is first coherently

displaced by amplitude γ, |ψin〉 → D̂(γ)|ψin〉. Subsequently, a single pho-

ton is subtracted from the state, which is mathematically described by the

action of annihilation operator â. Finally, the state undergoes an inverse

displacement by −γ, and we have

|ψout〉 = D̂(−γ)âD̂(γ)|ψin〉
= c+(α+ γ)|α〉+ c−(−α+ γ)| − α〉. (4.2)

This operation then becomes equivalent to a phase gate, up to a global phase

factor, when the complex displacement γ satisfies

γ − α
γ + α

= eiφ, (4.3)

which yields γ = iα/ tan(φ/2).

The basic concept can be adapted for the other two gates required for

qubit information processing - the controlled phase gate and the Hadamard

gate. The controlled phase gate acts on two qubits, transforming their joint
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state as

c11|α, α〉+ c10|α,−α〉+ c01| − α, α〉+ c00| − α,−α〉
→ c11|α, α〉+ c10|α,−α〉+ c01| − α, α〉+ c00e

iφ| − α,−α〉 (4.4)

and is locally equivalent to the C-NOT gate. It can be implemented by

performing two displaced single photon subtractions in one arm of a balanced

Mach-Zehnder interferometer which mixes the two modes, see Fig. 4.2. We

can formally express this operation as

|Ψout〉 = Û †BSbD̂
†
2âD̂2D̂

†
1âD̂1ÛBSb|Ψin〉

= (â+ b̂+ γ2)(â+ b̂+ γ1)|Ψin〉, (4.5)

where ÛBSa and ÛBSb are unitary operators of the two beam splitters and

γ1 with γ2 are the two displacing amplitudes. Straightforward evaluation

reveals that the controlled phase gate is realized when the amplitudes satisfy

γ1,2 = −α


1±

√
eiφ − 9

eiφ − 1


 . (4.6)

The final member of the set of elementary gates, the Hadamard gate, re-

quires more than single photon subtractions. This is quite understandable,

because the gate is supposed to transform a coherent state |α〉 into a super-

posed state |α〉 + | − α〉, which is a strongly non-linear process. Therefore

an additional superposed coherent state, say |α〉 + | − α〉, is required as a

resource. The required configuration is illustrated in Fig. 4.3.

The goal is to perform controlled subtraction of a single photon from

the ancilla represented by operator â + β, where β = 0 when the input

was in state |α〉 and β � 1 when the input was in state | − α〉. This can

be realized by first displacing the input state by α to obtain D̂(α)|ψin〉 =

c+|β〉 + c−|0〉 where β = 2α. This is followed by tapping off light from

the two participating modes, mixing it on an unbalanced interferometer,

and feeding it into a single photon detector. This realizes joint photon
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Figure 4.3: (Color online) Schematic representation of the approximate
single-mode Hadamard gate. BSu stands for a highly unbalanced weakly
reflecting beam splitter, while BSΓ is a beam splitter with transmission
coefficient tΓ used to set the parameter Γ. APD stands for a avalanche pho-
todiode and 〈π| represents the suitable projective measurement (see text).

subtraction Γâ + b̂, where â and b̂ are annihilation operators acting on the

ancillary and the input mode, respectively. After the input state is then

projected onto a chosen pure state 〈π|, the state of the ancilla remains as

c+〈π|β〉[(β + Γα)|α〉+ (β − Γα)| − α〉] + c−〈π|0〉Γα(|α〉 − | − α〉). (4.7)

If |Γα| � |β| holds, we can make approximation β±Γα ≈ β and the output

state simplifies to

c+〈π|β〉β(|α〉+ | − α〉) + c−〈π|0〉Γα(|α〉 − | − α〉). (4.8)

The desired Hadamard operation is then performed if 〈π|β〉β = 〈π|0〉Γα. To

achieve this, the projective measurement |π〉 needs to be properly chosen.

For example, using homodyne detection to project on a x̂ eigenstate 〈x̂ = q|
is appropriate, provided that exp[−(q −

√
2β)2/2] = exp(−q2)αΓ/β. This

can always be done. The value of Γ itself can be set by manipulating the

beam splitter of the joint photon subtraction as Γ = tΓ/
√

1− t2Γ. In this

way, even if there is a large difference in amplitudes of the two participating

states, the Hadamard gate can be implemented with arbitrary precision.

The Hadamard gate was tested experimentally [A6]. The gate was im-

plemented for the base states |α〉 and | − α〉 with α = 0.75. For these base

states the gate was realized with fidelities Fα = 0.94 and F−α = 0.65. To get
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Figure 4.4: Simulation of the Hadamard gate of arbitrary coherent state
qubits: a) Fidelity; b) Probability of success.

a greater insight we used the experimental parameters of the setup to simu-

late the effect of the gate on an arbitrary qubit in the coherent state basis.

The fidelities, shown in Fig. 4.4a span the interval F ∈ [0.67, 0.96] with an

average value of F = 0.78. For the base states |α〉 and | − α〉, the fidelities

were predicted as Fα = 0.88 and F−α = 0.67, which agreed well with the

observed results. The probabilities of success are shown in Fig. 4.4b. The

fidelities and probabilities of success can be also merged into a single figure

of merit, the fidelity of process [79, 80], which was found to be F = 0.70.

4.2 Continuous Information Processing

Continuous processing of quantum information tries to take advantage of the

full infinite dimension of the Hilbert space of harmonic oscillators [16]. This

naturally complicates the required tools, because quantum states and quan-

tum operations employable by the processing tend to have infinite number

of potential parameters. However, any practical realization always needs to
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be restrained to a finite dimensional subspace, even though the number of

dimensions can be chosen arbitrarily high. The arbitrary quantum states

and operations required by the processing can be then decomposed into

elementary resources, which can be investigated individually.

For optical systems, one such elementary object is the single photon.

Together with the set of Gaussian operations, single photon states are suf-

ficient for probabilistic implementation of arbitrary quantum operation on

a Hilbert space with arbitrary finite dimension [81]. This is enabled by

the ability to use single photon states, together with Gaussian measure-

ments, to implement projective single photon measurements. Such mea-

surement can be realized with help of an ancillary single-photon state, a

balanced beam splitter and a pair of homodyne detectors measuring two

different quadrature operators x̂1 and p̂2. Successful projection is heralded

by outcomes x1 = 0 and p2 = 0. In this case, the two input modes im-

pinging on the balanced beam splitter are projected on the maximally en-

tangled EPR state |ΨEPR〉 =
∑∞

n=0 |n, n〉. This in conjunction with the

ancillary single-photon state implements the probabilistic projection on a

single-photon state. Single-photon states and single-photon measurements

combined with Gaussian operations are sufficient for probabilistic prepa-

ration of arbitrary finite dimensional multimode quantum state [81] and

implementation of arbitrary transformation on the employed finite Hilbert

space, e.g. by exploiting the scheme described in Ref. [51] or simply by

quantum teleportation [82].

In [A7] we discovered that single photon states are not unique in this

regard. In fact, an arbitrary non-Gaussian state |ψN 〉 =
∑N

k=0 ck|k〉 which

is finite in Fock basis shares this feature. This is because a supply of such

states can be probabilistically transformed, by means of Gaussian operations

and Gaussian measurements, into the supply of single photon states. This

can be realized by the configuration shown in Fig. 4.5. A single copy of

the non-Gaussian state is subjected to a sequence of photon subtraction

operations, which can be realized by Gaussian operations and the available

non-Gaussian states, see Fig. 4.5b. These subtraction operations transform

the state into superposition c0|0〉+ c1|1〉. This state can be then separated
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Figure 4.5: (a) Scheme for generating a single photon state from an arbitrary
state with finite dimension. (b) Detailed scheme for a single subtraction step.
t, ta, and tb denote transmission coefficients of the respective beam splitters,
BS - balanced beam splitter, HD - homodyne detection, D(ξ) - displacement
driven by the measured value ξ.

on a beam splitter with transmission coefficient t and homodyne detection

is used to project one mode into quadrature eigenstate orthogonal to state

c0|0〉 + c1

√
1− t2|1〉. This leaves the remaining mode in the single photon

state.

Single photon states are sufficient for realization of an arbitrary operation

on a finite dimensional Hilbert space. However, there are several possible

paths leading towards this goal. Employing the teleportation paradigm [82],

any operation can be probabilistically achieved by preparing a suitable en-

tangled state. Different suitable quantum states can be used to realize any

operation, which can be expressed as a linear superposition of annihilation

and creation operators [51].

However, there is an alternative approach. In [A8] we have shown that

it is possible to decompose certain operations into a sequence of elementary

gates. The problem of realizing an arbitrary operation then shifts to the

problem of reliably implementing these basic gates, which can be realized

one at a time. The elementary gates can be described by operators:

Â(λ−, λ+) = 1 + λ−â+ λ+â
†, (4.9)

where λ+ and λ− are arbitrary complex parameters. When |λ+| = |λ−|, the
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gate realizes an X-gate - an arbitrary superposition of a quadrature oper-

ator and unity, 1 + λx̂. Such gates can be, according to the fundamental

theorem of algebra, used to compose an arbitrary polynomial of the quadra-

ture operator. This allows, for example, simulating behavior of a quantum

system, in an arbitrary nonlinear potential. The general form (4.9) can be

used for construction of more complicated superpositions of annihilation and

creation operators, but, due to their non-commutativity, finding the proper

decomposition is not always straightforward.

The elementary gate can be realized by mixing the signal s with an

ancillary single photon state in mode a1 on a beam splitter with transmis-

sivity T and following it by a projective unbalanced heterodyne detection,

see Fig. 4.6. The projection consists of splitting the ancilla on a beam split-

ter with transmission and reflection coefficients T and R, respectively, and

projecting the two emerging modes a1 and a2 onto specific eigenstates |x′〉
and |p′〉 of quadrature operators x̂ and p̂. The full gate can be represented

by operator

a1〈x′|a2〈p′|Ûa1,a2|0〉a2Ûa1,s|1〉a1

=a1 〈A,B|Ûa1,s|1〉a1

= exp[A∗
R

T
â+B∗

R2

T 2
â2]T n̂−1(A∗ + 2B∗R∗â+Râ†), (4.10)

where 〈A,B| is shorthand notation for the projective measurement where

A =
√

2(x′T − ip′R) and B = 1
2(R − T 2) are complex coefficients with

arbitrarily adjustable phases. Operators Ûk,l are unitary operators of beam

splitters coupling modes k and l.

The operator (4.10) is composed of three parts: the ideal operation

A∗ + 2B∗R∗â + Râ† consisting of the proper superposition of annihilation

and creation operators, the error operator exp[A∗Râ + B∗R2â2], and an-

other error operator T n̂−1 which corresponds to pure attenuation. These

two sources of error need to be considered separately, as each of them pos-

sesses very different properties. The error term exp[A∗Râ+B∗R2â2] can be

compensated using the principally same configuration as (4.10), only with
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Figure 4.6: Scheme for realizing the X-gate. T and T denote transmissivities
of the respective beam splitters. HD - homodyne detectors.

vacuum in place of the single photon state. On the other hand, term T n̂

represents noiseless attenuation and can be removed only by noiseless ampli-

fication. It should be noted that in the case of a highly transmissive beam

splitter R � 1, all sorts of errors become less prominent even up to the

point when the correction step is not necessary.
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4.3 Summary

We have addressed two approaches towards quantum information process-

ing with CV quantum optics. For the first one, employing discrete states

encoded into continuous systems, we have designed the full set of measure-

ment induced elementary gates needed for probabilistic simulation of all

processing tasks, and we have tested one of these gates experimentally. For

the second, fully continuous approach with completely arbitrary quantum

states, we have first expanded the definition of required resources from single

photons to arbitrary finite dimensional states, and then proposed an elemen-

tary non-Gaussian gate from which other, more convoluted operations can

be constructed. This chapter is based on the following publications:

• P. Marek and J. Fiurášek, Resources for universal quantum-state ma-

nipulation and engineering, Physical Review A 79, 062321 (2009)

• P. Marek and J. Fiurášek, Elementary gates for quantum informa-

tion processing with superposed coherent states, Physical Review A

82, 014304 (2010)

• A. Tipsmark, R. Dong, A. Laghaout, P. Marek, M. Ježek, and U. L.

Andersen, Experimental demonstration of a Hadamard gate for coher-

ent state qubits, Physical Review A 84, 050301(R) (2011)

• K. Park, P. Marek, and R. Filip, Nonlinear potential of a quantum

oscillator induced by single photons, Physical Review A 90, 013804

(2014)
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Chapter 5

Deterministic Quantum

Information Processing

In a sense, processing quantum information probabilistically is more pow-

erful than the deterministic approach - some quantum operations simply

can not be realized with unit probability of success [20, 21, 52]. All this

power, however, is for naught when it prevents one of the ultimate goals of

quantum simulation and computation: the exponential speedup of quantum

methods over the classical ones [23]. If individual quantum operations are

probabilistic, the overall success probability of quantum networks will be ex-

ponentially decaying with the number of systems and individual operations

and the improvement will be lost. In order to develop scalable quantum in-

formation processing it is necessary to develop quantum operations capable

of operating in the deterministic regime.

Such operations are unitary and their respective interaction Hamilto-

nians can be, in the case of single mode harmonic oscillator, represented

as

Ĥ =
∑

k1,k2

(ck1,k2 x̂
k1 p̂k2 + c∗k1,k2 p̂

k2 x̂k1). (5.1)

Such general operation is very difficult to come by, not only because the

number of free parameters can be in principle infinite. Even the limited

subclass of operations, for which the expansion is finite and the coefficients
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ck1,k2 are time independent, is mostly experimentally unreachable. This is

caused by the nature of the CV systems and the restricted set operations

available to them. It could be said that the operations naturally available for

CV systems are Gaussian [40], with Hamiltonians (5.1) and k1 +k2 ≤ 2. Un-

fortunately, such operations lead only to linear transformation of quadrature

operators and are therefore unsuitable for the desired quantum information

processing tasks [41].

These are enabled by operations with Hamiltonians of higher order, also

called nonlinear operations. Fortunately, for nearly universal processing we

do not need access to wide range of possible operations, it is sufficient to be

able to realize any one [34]. This is because there are techniques which allow

transmogrifying available unitary operations into different ones. Specifically,

two quantum unitary operations, represented by Hamiltonians Â and B̂ can

be sequentially applied in order to arrive at:

eiÂteiB̂te−iÂte−iB̂t ≈ e−[Â,B̂]t2 +O(t3). (5.2)

The sequence of the non-commuting unitary operators approximatively re-

alizes a new unitary operator with Hamiltonian proportional to the commu-

tator of the two original Hamiltonians. The order of the new Hamiltonian

is NA + NB − 2, where NA and NB are the orders of Hamiltonians Â and

B̂. If the two operations are Gaussian with NA, NB ≤ 2, the new opera-

tion is Gaussian as well. If at least one of the operations is nonlinear, the

new operation can be nonlinear as well, and if both Â and B̂ correspond to

nonlinear operations, the new operation will be of higher order than any of

its constituents.

Unfortunately, deterministic experimental realization of even any quan-

tum nonlinear operation is an extremely difficult task. For example, one

of the best known nonlinear operations for optical systems, the Kerr non-

linear phase shift represented by Hamiltonian Ĥ ∝ (â†â)2 can be observed

for strong classical signals, but at the quantum level its strength is several

orders of magnitude too weak [45]. It is therefore prudent to consider real-

izing such nonlinear operations artificially. And in doing so, it is sensible to
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Figure 5.1: Scheme for deterministic implementation of the nonlinear cubic
gate. QND - quantum non-demolition interaction, HD - homodyne detec-
tor, S(x) and D(x) represent the squeezing and displacement, respectively,
driven by the measured value x.

focus on the simplest nonlinear operation sufficient for the task, the cubic

operation [83] represented by Hamiltonian Ĥ ∝ x̂3.

5.1 Cubic gate - theoretical concept

In the idealized picture, the deterministic realization of the cubic gate relies

on generating the cubic nonlinearity in a specific resource state and later us-

ing this state in a measurement-induced scheme to imprint the nonlinearity

onto an arbitrary quantum state [83], see Fig. 5.1. The basic principle is best

understood in the x-representation, in which the pure state state is given

by |ψ〉 =
∫
ψ(x)|x〉sdx and the resource state is |A〉 =

∫
e−iχy

3 |y〉ady with χ

being the strength of the desired nonlinearity and subscripts s and a label-

ing the modes. These two states are coupled via a quantum non-demolition

(QND) coupling, represented by unitary operator ÛQND = eix̂sp̂a , which

transforms their joint state into

∫
ψ(x)e−iy

3 |x〉s|y − x〉adxdy. (5.3)

The x̂a quadrature of the ancillary mode now gets measured by a homo-

dyne detection which yields a real value q. This measurement collapses the

unknown state of the signal into

∫
ψ(x)e−i(x+q)3 |x〉dx = e−iq

3
e−i3q

2x̂e−i3qx̂
2
(e−ix̂

3 |ψ〉). (5.4)
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We can see that the resulting state consists of the ideally transformed state

e−ix̂
3 |ψ〉 warped by presence of additional operations depending on the mea-

sured value q. In the probabilistic regime we could condition on the mea-

sured value being q = 0, but in the deterministic setup the final state is a

mixture of all possibilities. Fortunately, of the three terms, eiq
3

is incon-

sequential because it represents a global phase and e−i3q
2x̂e−i3qx̂

2
can be

removed by Gaussian operations - displacement and squeezing. Such Gaus-

sian feed-forward completely removes the q dependence and results in clean

implementation of the cubic gate.

There are several tools necessary for implementation of the cubic gate.

The required Gaussian tools consist of the QND coupling, homodyne detec-

tion, and dynamically driven feed-forward with displacement and squeezing.

All of these can be considered within the reach of contemporary experimen-

tal know-how. The biggest hurdle to overcome is the generation of the

non-Gaussian resource, field of light in the cubic state

|A〉 = e−χx̂
3 |p = 0〉 =

∫
e−iχy

3 |y〉dy. (5.5)

This state requires both infinite energy, inherent in the quadrature eigen-

state, and the otherwise unavailable cubic nonlinearity. For these two rea-

sons we can’t really hope to prepare the state in its ideal form. In [A9] we

have shown that we can, however, consider an approximation.

Instead of a quadrature eigenstate we can employ a finitely squeezed

state Ŝ|0〉 = (πg)−1/4
∫

exp(−x2/g)|x〉dx which allows us to express the

ancillary state as Ŝe−iχ
′x̂3 |0〉, where χ′ = χg−3/2 is the effective nonlinear

constant. If we now consider realizations in which the effective nonlinearity

is weak, we can expand the unitary operator and arrive at the approximate

resource state looking as

Ŝ(1 + χ′x̂3)|0〉 = Ŝ

(
|0〉+ χ′

3

2
√

2
|1〉+ χ′

√
3

2
|3〉
)
. (5.6)

As squeezing can be considered a well accessible resource, the creation of the

suitable ancilla reduces to preparing a suitable superposition of zero, one,
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Figure 5.2: Scheme for probabilistic generation of a specific non-Gaussian
state. The entangled two-mode squeezed state is generated in oscillator
cavity with nonlinear medium (NOPA). The two frequency modes are sepa-
rated by the frequency separator (FS) and one of the modes is divided on a
sequence of beam splitters (BS), subject to suitable displacements D1, D2,
and D3, and measured by single photon detectors.

and three photons. Fortunately, preparation of such state can be in principle

done probabilistically, because the prepared state can be stored in quantum

memory and released when needed [47, 48]. Quantum memories of sufficient

quality are not yet available, but they are the focus of intensive investigation

as they are needed for full scale quantum computation no matter which

particular architecture wins in the end.

We have shown, in [A10, A11] that the required quantum state can be

prepared with help of the setup presented in Fig. 5.2. The basic component

is the two mode squeezed vacuum,

ψTMS,1,2 ∝
∞∑

k=0

λn|n, n〉1,2. (5.7)

Sequence of beam splitters is now used to split one of the modes into three,

with intensity in these three modes being equal. Each of these three modes

is then displaced by coherent amplitude βj , j = 1, 2, 3, and directed towards

an avalanche photodiode. In the limit of weak intensity, the avalanche pho-

todiodes act as single photon detectors and project the other mode of the
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two-mode squeezed vacuum into

|ψ〉2 ∝ 〈0|1
(
â√
3

+ β1

)(
â√
3

+ β2

)(
â√
3

+ β3

)
|ψ〉TMS,1,2

∝ β1β2β3|0〉2 +
λ√
3

(β1β2 + β2β3 + β1β3)|1〉2 +

+
λ2
√

2

3
(β1 + β2 + β3)|2〉2 +

λ3
√

2

3
|3〉2. (5.8)

In order to prepare the resource state (5.6), which we can in short express

as |0〉+ c1|1〉+ c3|3〉, the three displacement amplitudes need to satisfy a set

of equations:

β1β2β3 = A

β1β2 + β1β3 + β2β3 =
Ac1

√
3

λ
β1 + β2 + β3 = 0√

2λ3

3
= Ac3, (5.9)

where A is a numerical constant related to the normalization factor, which

needs to be set in accordance with the required nonlinearity χ′ and the

available two-mode squeezing λ. The values of displacing amplitudes can be

found analytically in the form

β1 =
ξ +

√
ξ2 − 4ζ

2
, β2 =

ξ −
√
ξ2 − 4ζ

2
, β3 = −ξ, (5.10)

where ξ and ζ are solutions to the set of equations

ξζ +A = 0, ζ − ξ2 − Ac1

√
3

λ
, (5.11)

which always exist and can be obtained using the Cardan formula.
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Figure 5.3: (a) Wigner function and density matrix of the experimentally
generated state. (b) Wigner function and density matrix of the experimen-
tally generated state after a single photon is numerically subtracted from
the data.

5.2 Experimental cubic states

To test the viability of the setup for state generation we employed it to

generate the ancillary resource state |ψid〉 ∝ (1 − iχ′x̂3)|0〉 for χ′ = 0.09

[A10]. In Fig. 5.3a we can see the reconstructed Wigner function and

density matrix. However, deciding whether the preparation was success-

ful didn’t turn out to be a straightforward task. The prepared state, rep-

resented by density matrix ρ̂exp, had a significant overlap with the target

state, F = 〈ψid|ρexp|ψid〉 = 0.90. On the other hand, due to low strength

of the nonlinearity, the state had higher overlap with the vacuum state

〈0|ρ̂exp|0〉 = 0.95. As a consequence, it was necessary to develop new meth-

ods for detecting the presence of cubic nonlinearity in the generated state.

45



(a) (b)

−5 0 5
−0.1

−0.05

0

0.05

0.1

x

Im
[ρ

(x
,−

x)
]

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

α

<
p>

Figure 5.4: a) Imaginary parts of the anti-diagonal values of coordinate
density matrices for the ideal state with χ = 0.090 (dashed blue line), the
experimentally generated state (dotted green line) and the experimentally
generated state after the suitable displacement ∆p = −0.17 (solid red line).
b) First moment of p for various coherent states: ideal state with χ = 0.090
(dashed blue line), experimentally generated state (dotted green line), and
experimentally generated state after the suitable displacement ∆p = −0.16
(solid red line).

The first step was looking for the desired features while excluding the

dominant contribution of the vacuum term. This was be achieved by trans-

forming the state by a virtual photon subtraction operation resulting in

transformation

ρ̂exp → ρ̂1sub =
âρ̂expâ

†

Tr(âρ̂expâ†)
. (5.12)

For the ideal state, this would result in superposition |ψid,1sub ∝ |0〉+
√

2|2〉.
This is a state resembling an even superposition of coherent states and its

Wigner function exhibits two regions of negativity. And indeed, as seen in

Fig. 5.3, the transformed Wigner function did indeed show this distinctively

nonclassical behavior.

Another approach relied on looking for the cubic nonlinearity in the x

representation. In this representation, the impure experimental state can be

represented by complex function ρ(x, x′) = 〈x|ρ̂exp|x′〉. The cubic nonlinear-

ity is best visible in the imaginary part of the main antidiagonal which, for

the ideal state, equals to Im[ρ(x,−x)] = 2χ′x3e−x
2
. The cubic effect should
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therefore manifest as as the third order polynomial modulating the overlay-

ing Gaussian function. Unfortunately, this behavior is quite fragile and can

be masked by other Gaussian operation, mainly displacement, which mod-

ulate the Gaussian envelope by a linear term. This can be seen in Fig. 5.4a,

in which the experimental data failed to demonstrate the desired behavior.

However, after we numerically compensated the displacement, which in this

case corresponded to displacing the p̂ quadrature by ∆p = −0.17, the cubic

nonlinearity was revealed.

Finally, we also analyzed how would the prepared state perform as part of

the full cubic gate. In order to diminish the effects of classical feed-forward,

we considered a probabilistic scenario which relied on post-selecting runs in

which the measured value was found to be q = 0. Based on our knowledge

of the resource state ρexp we numerically simulated the effect of the gate

on a set of coherent states |α〉in. The behavior we were looking for can be

expressed in terms of moments of quadrature operators x̂in and p̂in according

to 〈x̂out〉 = 〈x̂in〉, 〈p̂out〉 = 〈p̂in〉+ 3χ〈x̂2
in〉. The first moment of x̂ should be

preserved, while the first moment of p̂ should become linearly dependent on

the second moment 〈x̂2〉 = var(x) + 〈x̂〉2. For coherent states with variance

not depending on the amplitude, the second moment is a quadratic function

of the amplitude. It is this quadratic moment we were looking for in the

potentially measurable mean value 〈p̂out〉. Fig. 5.4b shows the dependency

and we can see that, similarly as in the previous case, there was a constant

off-set in the form of p̂ quadrature displacement with ∆p = −0.16. These two

displacements were obtained by independently optimizing different figures

of merit, we can therefore assume that, apart from the displacement, we

have indeed progressed towards preparation of the required resource state.

It should be also noted that preparation technique is not limited to

preparation of the cubic states. Suitable choice of the coherent amplitudes

allows preparation of an arbitrary superposition of Fock states up to number

three [A11]. The technique was explicitly used for preparation of isolated

Fock state |3〉, as well as for preparation of odd superposed coherent states

|α〉 − | − α〉, or three-headed superposed coherent states |α〉 + |αei 2π3 〉 +

|αe−i 2π3 〉. All of these states exhibited strong nonclassical feature which
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Figure 5.5: Scheme of the cubic gate realized by non-Gaussian adaptive
measurement. BS - balanced beam splitter, HD - homodyne detection, R(θ)
- phase shift by angle θ, D(q, y) - displacement by value dependant of q and
y.

demonstrated suitability of the technique for future quantum information

processing protocols other then the deterministic cubic gate.

5.3 Streamlining the scheme

The Gaussian feed-forward, required for the implementation of the cubic

gate, can be simplified to only consist of displacement operations. This is

advantageous because the displacement is easier to realize and it comes bur-

dened with fewer imperfections. The new configuration, depicted in Fig 5.5,

is completely measurement driven and employs a new form of adaptive non-

Gaussian measurement. Such measurement, which consist of several steps

which can be dynamically changed based on prior measurement results,

allows projecting on a non-Gaussian state transformed through arbitrary

Gaussian operation. As a consequence, the required squeezing can be al-

ready performed during the measurement step and can be left out of the

feed-forward.

In the adaptive projective measurement, the signal s is first mixed with

ancilla a on a balanced beam splitter, creating a two mode state described by
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Wigner function WS(xs, ps, xa, pa). The ancillary mode a is then subjected

to the adaptive measurement. As part of the measurement, mode a is mixed

on a balanced beam splitter with an ancillary mode b with Wigner function

WA(xb, pb). The x̂b quadrature of the second ancilla can be now measured by

homodyne detection, yielding value q. This value can be now used in feed-

forward altering the state of mode a so that the second homodyne detector

measures value y of operator p̂a cos θ + x̂a sin θ, where θ = arctan(3
√

2χ′q).

This leads to the output state of the signal represented by Wigner function

Wout(xs, ps|q, y) ∝
∫
WS(xs, ps, xa, pa)WM (xa, pa; q, y)dx1dp1, (5.13)

where

WM (x, p; q, y) =
2

| cos θ|WA

(
−x+

√
2q, p+ 2x tan θ − q

√
2 tan θ + y

√
2

cos θ

)
.

(5.14)

This corresponds to projecting signal onto the state of the ancilla displaced

by the measured values and squeezed (operation with hamiltonian H ∝ x̂2)

by a factor related to θ. This squeezing is exactly the operation required by

the feed-forward step of the cubic gate. The remaining dependency on the

measured values can be now removed by a single displacement operation.

Another path towards a more effective operation lies in tailoring the an-

cillary state to the state preparation method. Since the state preparation

always produces a state constrained to a finite Fock subspace, possibly later

adjusted by proper Gaussian operations [84], it is beneficial to try and op-

timize the state preparation to find the best cubic states with regards to

the constraints. As the figure of merit we can use the variance of nonlinear

quadrature 〈(p̂− 3χ′x̂2)2〉, which should be zero for the ideal cubic resource

state. The mean value of the operator can be freely adjusted by displacing

the state in p̂ and it is therefore another parameter which can be optimized

over. For any maximal Fock number N we used numerical methods to find

the optimal approximate state |ψopt
N 〉 =

∑N
k=0 c

opt
k |k〉 in the respective re-

stricted Hilbert space. The Wigner functions of optimal states for several
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Figure 5.6: Wigner functions of the optimal ancillary states. (a) The ideal
cubic state for γ = 0.1 (normalized over the displayed area), (b) N = 1, (c)
N = 3, (d) N = 5, (e) N = 9. Note that the approximate states have offsets
in the p direction, which can be compensated by p displacement.
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possible Fock numbers are illustrated in Fig 5.6.
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5.4 Summary

We have proposed a way to deterministically realize cubic nonlinear gate,

which uses the measurement induced methodology to imprint the nonlin-

earity from a suitable ancilla to the target state. We have shown how the

required ancilla, as well as other nonlinear quantum states, can be con-

structed by employing a tailored network of single photon detectors and

displacements. Finally, we have presented a general concept of adaptive

non-Gaussian measurement and shown how it can be employed in stream-

lining the original cubic gate into a more feasible form. The content of the

chapter draws from the following publications:

• P. Marek, R. Filip, and A. Furusawa, Deterministic implementation

of weak quantum cubic nonlinearity, Physical Review A 84, 053802

(2011)

• M. Yukawa, K. Miyata, H. Yonezawa, P. Marek, R. Filip, and A.

Furusawa, Emulating quantum cubic nonlinearity, Physical Review A

88, 053816 (2013)

• M. Yukawa, K. Miyata, T. Mizuta, H. Yonezawa, P. Marek, R. Filip,

and A. Furusawa, Generating superposition of up-to three photons for

continuous variable quantum information processing, Optics Express

21, 5529 (2013),

• K. Miyata, H. Ogawa, P. Marek, R. Filip, H. Yonezawa, J. Yoshikawa,

and A. Furusawa, Implementation of a quantum cubic gate by an

adaptive non-Gaussian measurement, Physical Review A 93, 022301

(2016),
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Chapter 6

Conclusion

In this habilitation we addressed one of the key issues of contemporary quan-

tum information processing with light - implementing quantum nonlinearity

of sufficiently high order. Such quantum nonlinearity, which is strongly

related to non-Gaussian quantum states of light, is required for many ad-

vanced applications of quantum information processing, the most prominent

example being the quantum computation. The difficulty in implementing it

can be traced back to the fundamental nature of light. Photons are bosons,

which means that it is very difficult to make them interact. In fact, any in-

teraction can happen only by interacting with other objects, such as atoms

of the material used in construction of optical components. By careful ma-

nipulation, photons can be made to share modes and bunch together, but

when it comes to active transformations, for example in the form of a con-

trolled phase shift, they prefer to not get involved. Years of research in the

area of DV QIP with quantum optics were dedicated towards designing tools

and tricks to help, or rather to force photons to interact more strongly.

In this thesis we were interested in nonlinear properties of fields of light,

rather than individual photons. The basic hurdles, however, were the same.

The fields can be straightforwardly manipulated in a linear fashion but the

materials capable of facilitating nonlinear behavior were and still mostly

are unavailable. Fortunately, we do have access to detectors capable of

distinguishing between zero and one photons. Such detectors can be used for
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preparation of single photon states, which can then be used as the resources

for the nonlinear operations. Alternatively, this intermediate step can be

skipped and the detectors can be used for implementing nonlinear operations

directly, by means of measurement induced operations.

We have applied this paradigm to several actual problems. The first

one, discussed in Chapter 3, was a specific example of quantum nonlinearity

tailored to a particular task - the noiseless amplification of quantum co-

herent states. We have presented two proposals for the noiseless amplifiers

[A1] and followed up with analysis of the experimental tests performed in

collaboration with Max-Planck Institute for Science of Light in Erlangen.

The experimental tests demonstrated that the proposals are sound and that

they indeed implement amplification with added noise amounting signifi-

cantly less than required by classical devices [A2, A3]. We have finished

the chapter by establishing the bounds on the quality of measuring optical

phase, which even limit even the noiseless amplification protocols [A4].

In Chapter 4 we have abandoned the specific example and moved towards

a more general picture. The chapter can be still divided into two concep-

tually differing segments. In the first one, we have considered a general

transformation of CV quantum states, but the states themselves were lim-

ited. We investigated the possibility of implementing quantum operations

for discrete qubits encoded in the basis of continuous coherent states. This

encoding has several benefits over its completely DV counterpart, but also

several drawbacks. One is, that even operations linear for the qubits become

nonlinear due to the encoding into quantum states which can contain many

photons on average. We have devised the full set of operations required for

universal processing [A5] and, in collaboration with Danish Technical Insti-

tute in Lyngby, tested one of them in an experimental setting [A6]. In the

second part of Chapter 4 we turned our attention to a more general scenario

involving arbitrary quantum states of light. We have expanded the defini-

tion of universal quantum resource, showing that next to single photons it is

also sufficient to have access to any states limited in Fock basis [A7], and we

have proposed a way to decompose general operations into sequence of indi-

vidual elementary quantum gates, which can be independently constructed
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from measurements and individual photons [A8].

Finally, in Chapter 5 we have dropped the crutch of the preceding chap-

ters and focused on implementing quantum nonlinearity in a deterministic

fashion. This is a significant step towards practical utilization, because it

enables scalability of the quantum protocols. Quantum operations imple-

mented in a probabilistic way play an important role in proof-of-principle

experiments, but the ultimate consequence of their chancy nature is a prob-

ability of success which drops exponentially fast as the number of employed

operations increases. We have refined the proposal for the deterministic

cubic gate and shown how the required resource states can be constructed

from individual photons or single photon measurements [A9]. We have then,

in collaboration with the University of Tokyo successfully experimentally

tested the possibility of preparing the states in this way [A10, A11]. We

have also further refined the scheme for the cubic gate, simplifying the ex-

perimental implementation considerably [A12]. As a consequence we believe

that we could achieve the full deterministic cubic gate soon.

55



56



References

[A1] P. Marek and R. Filip, Coherent-state phase concentration by quantum
probabilistic amplification, Physical Review A 81, 022302 (2010).

[A2] M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C.
Marquardt, G. Leuchs, and U. L. Andersen, Noise-powered probabilistic
concentration of phase information, Nature Physics 6, 767 (2010).

[A3] C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G.
Leuchs, U. L. Andersen, Probabilistic cloning of coherent states without
a phase reference, Physical Review A 86, 010305(R) (2012).

[A4] P. Marek, Optimal probabilistic measurement of phase, Physical Re-
view A 88, 045802 (2013).
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Coherent-state phase concentration by quantum probabilistic amplification
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We propose a probabilistic measurement-induced amplification for coherent states. The amplification scheme
uses a counterintuitive architecture: a thermal noise addition (instead of a single-photon addition) followed
by a feasible multiple-photon subtraction using a realistic photon-number-resolving detector. It allows one to
substantially amplify weak coherent states and simultaneously reduce their phase uncertainty, which is impossible
when using a deterministic Gaussian amplifier.

DOI: 10.1103/PhysRevA.81.022302 PACS number(s): 03.67.Hk, 03.67.Dd

I. INTRODUCTION

Quantum optics has an extraordinary capability to combine
observations of both the wave and the particle phenomena.
Information can be encoded both into the intensity and into
the phase of an optical field. Although the intensity approach,
involving photons, may inherently seem more “quantum” than
the phase approach, neither can be described by classical
physics in full [1]. In this article, it is the phase aspect of
the optical field we are going to focus on. The main aim of the
quantum phase information processing is to reduce noise in the
system and to compensate for the loss. The classical processing
methods, mostly based on measurement and repreparation, are
of limited usefulness [2] because of the inherent noise present
in all quantum systems. This problem is especially pronounced
for optical signals with low intensities, possibly occurring
as a consequence of loss. In general, we seek to enhance
an unknown phase of an optical signal by deterministic or
probabilistic methods, where the main benefit of probabilistic
methods lies in their ability to qualitatively overcome the limits
of deterministic operations.

A coherent state |α〉, the approximation of a light from a
stabilized laser, is a natural medium for the phase encoding
of information. Coherent states are nonorthogonal and very
strongly overlapping if the amplitude is small, which can
easily happen after a strong attenuation. Therefore, it is highly
desirable to reamplify the states in a way that improves
the phase information, ideally performing the transformation
|α〉 → |gα〉, where g > 1. One might naturally think of the
displacement operation, but keep in mind we seek to amplify
a coherent state with an unknown phase and therefore we lack
the knowledge needed for the correct displacement. Another
option is the Gaussian parametric amplification [3,4], which
is phase insensitive and it can be applied to an unknown state.
However, in this case the phase information of the state does
actually get worse due to the fundamental quantum noise
penalty [5].

The ideal amplification |α〉 → |gα〉 is nonphysical, but for
small values of |α| it can be implemented approximatively. One
approach relies on the quantum scissors paradigm, limiting
the dimension of the used Hilbert state [6]. The input coherent
state is split into M weak copies, which can be approximated
by (|0〉 + α/M|1〉 + · · ·)⊗M and probabilistically amplified
to (|0〉 + gα/M|1〉)⊗M . For a small value of |α|/M the
subsequent Gaussifying concentration yields a finite Hilbert
space approximation of |gα〉. However, the procedure requires

multiple indistinguishable single-photon sources and high in-
terferometric stability of the multipath interferometer. Another
approach is based on a still highly sophisticated cross-Kerr
nonlinearity at a single-photon level followed by homodyne
detection [7]. This kind of amplification has already been
suggested, in Ref. [8], to concentrate entanglement.

In this article we propose a scheme for concentration of
an unknown phase of coherent states using a probabilistic
highly nonlinear amplifier. Our method is based on the addition
of thermal noise to the unknown coherent state, followed
by a multiple-photon subtraction using a photon-number-
resolving detector. This procedure probabilistically amplifies
the coherent state, increasing its mean photon number and
simultaneously substantially reducing the phase noise. It leads
to a probabilistic concentration of phase information, which
cannot be obtained by Gaussian operations alone. Remarkably,
the scheme requires neither single-photon sources nor high
interferometric stability—the resource for the highly nonlinear
amplification is the continual thermal noise injected into the
signal mode.

II. PHASE AND AMPLIFICATION

The quality of information carried by the phase is dif-
ficult to assess, as the phase is not a quantum mechanical
observable and therefore it cannot be directly and ideally
measured. However, each measurement devised to obtain
the phase of the state can be characterized by a real
positive-semidefinite matrix H , which is used in comput-
ing the phase distribution P (θ ) = Tr[ρF (θ )], where F (θ ) =
(1/2π )

∑∞
m,n=0 exp[iθ (m − n)]Hmn|m〉〈n| [9], and |m〉 stands

for the photon number Fock state. The actual form of the
matrix H depends on the process used to extract the phase
information. For example, for a phase obtained by the most
common heterodyne measurement, consisting of a balanced
beam splitter and a pair of homodyne detectors measuring
conjugate quadratures, the matrix elements are Hmn = �[(n +
m)/2 + 1]/

√
n!m!. Ultimately, for the ideal canonical phase

measurement Hmn = 1 and F (θ ) is a projector on the idealized
phase state |θ〉 = ∑∞

n=0 eiθn|n〉. To obtain a single parameter
characterizing the quality of phase encoding, we can use the
distribution P (θ ) to calculate the phase variance V = |µ|−2 −
1, where µ = 〈exp(iθ )〉 and subscripts H and C will be
used to distinguish between the heterodyne and the canonical
measurements, respectively. For calculations of an arbitrary
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measurement we can simply use the formula 〈exp(iθ )〉 =∫ π

−π
P (θ ) exp(iθ )dθ = Tr(

∑∞
n=0 Hn,n+1|n〉〈n + 1|ρ).

The coherent states can be expressed as |α〉 =
exp(−|α|2/2)

∑∞
n=0 αn/

√
n!|n〉. For these states, the quality of

phase encoding is fully given by the mean number of coherent
photons N = |α|2, and the phase variances, obtained with the
help of [9]

µC = e−|α|2α
∞∑

n=0

|α|2n

n!
√

n + 1
,

(1)

µH = e−|α|2α 1F1

(
3

2
; 2; |α|2

)
�

[
3
2

]
�[2]

,

are both monotonically decreasing functions of the mean
photon number N . For weak coherent states with N < 1, the
variances can be well approximated by

VC(N ) ≈ N−1 + 1 −
√

2 + O(N2),
(2)

VH (N ) ≈ 4/(πN ) + (−1 + 2/π ) + O(N2),

if we take only the dominating terms into account. In the
following, we focus primarily on the canonical phase variance.

For coherent states the phase variance is directly related
to the amplitude |α|. The ideal noiseless amplifier, which
increases the amplitude while keeping the state coherent,
would be therefore a suitable amplification device, if its
implementation were not so complicated. On the other hand,
the deterministic phase-insensitive (Gaussian) amplifier [3,4]
is experimentally quite feasible, but unfortunately it actually
worsens the phase variance of the coherent state. To show this,
we can use a method similar to the one used in [10] to calculate

µC = α∗

π

∫ 1
G

0

exp(−xGN )√
− ln 1−Gx

1−(G−1)x

dx, (3)

where G = g2 is the linear amplification gain. We can now
use (3) to obtain the phase variance and numerically verify its
increase.

III. AMPLIFICATION BY PHOTON ADDITION
AND SUBTRACTION

However, there is another mechanism that can be em-
ployed for amplification and phase improvement. Consider a
single-photon addition (described by a†|n〉 = √

n + 1|n + 1〉)
followed by a single-photon subtraction (described by a|n〉 =√

n|n − 1〉) applied to a weak coherent state (approximately,
|α〉 = |0〉 + α|1〉). This corresponds to aa†(|0〉 + α|1〉) →
a(|1〉 + √

2α|2〉) → |0〉 + 2α|1〉. For low N this reduces the
phase variance roughly by a factor of 4. Note, the canonical
variance actually decreases in both the creation and the
annihilation process.

For a coherent state transformed in this way, aa†|α〉,
the total mean photon number 〈N〉 = N (4 + 5N + N2)/(1 +
3N + N2) increases and the canonical variance

µC = exp(−N )

√
N

1 + 3N + N2

∞∑
n=0

Nn(n + 1)(n + 2)

n!
√

n + 1
(4)

is always lower than the Holevo variance from (1). For a lower
N < 1, the canonical phase variance after the probabilistic

procedure approaches the phase variance for the coherent
state with N = 〈N〉. For a larger N this effect tends to be
less pronounced as the relative influence of single-photon
operations diminishes. In this scenario it is convenient to
consider a generalization, a collective M-photon addition
followed by an M-photon subtraction. The phase variance is
then determined by

µC = e−N

√
N

N

×
∞∑

n=0

Nn

n!
√

n + 1

(n + M)!

n!
(n + 1 + M)(n + 1)!,

N = e−N

∞∑
n=0

Nn

n!

(
(n + M)!

n!

)2

, (5)

and it decreases as M grows. Simultaneously, this also leads
to an increase of the mean photon number. For sufficiently low
values of N , the canonical variance approaches the result of
the ideal noiseless amplifier and we can use the approximation

VC(N ) ≈ 1

(M + 1)2N
+ 1 − M + 2√

2(M + 1)
+ O(N2). (6)

Comparison to the analogous formula for the noiseless
amplifier (2) with N → g2N reveals that M + 1 can play a
role of the amplification gain g.

For the construction of such a probabilistic phase-
insensitive amplifier, the photon addition operation is required.
Furthermore, the photons have to be added coherently, per-
fectly interfering with the incoming coherent state. This task
can be performed using a nondegenerate optical parametric
amplifier with an avalanche photodiode monitoring the output
idler port [11]. This approach has already been used to verify
the validity of commutation relations for the annihilation oper-
ator [12], and it is therefore fully capable of demonstrating the
probabilistic amplification for M = 1. However, the procedure
is not trivial and adding and subsequently subtracting more
than two photons is currently unfeasible, mainly due to low
success rates.

IV. AMPLIFICATION WITH NOISE ADDITION

Fortunately, the amplification can be made simpler. Instead
of adding single photons separately, we can add a phase-
insensitive thermal noise, which is characterized by its mean
number of thermal photons Nth. The second step is then
the same as already discussed—the probabilistic subtraction
of M photons. Now the photon subtraction is an operation
which can improve the phase properties, but the noise addition
is clearly purely destructive. Why does it work then? The
main point is that the photon subtraction does nothing when
applied to a coherent state. However, for a mixed state the
photon subtraction serves as a probabilistic filter, improving
the weight of the high amplitude coherent states within the
mixture. The first step of the amplification could be explained
as a displacement in a random direction. This creates a
phase-insensitive mixture of coherent states slightly displaced
in the direction given by the initial phase. The second step,
the photon subtraction, then “picks” states with the highest
intensity and these states are mostly those for which the
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displacement had (purely by chance) the same phase as the
initial signal. The state after the subtraction is still mixed,
with the same mean phase as the initial coherent state, but the
overall amplitude has been increased by the amplification.

Formally, the density operator of the initial coherent state
after the noise addition and M photon subtraction can be
represented as ρamp = ∑

n,m ρn,m|n − M〉〈m − M|, where

ρn,m = 1

N

√
n!

m!
exp

(
− |α|2

Nth + 1

)
(α∗)m−nNn

th

(Nth + 1)m+1

× Lm−n
n

(
− |α|2

Nth(Nth + 1)

) √
n!m!

(n − M)!(m − M)!

(7)

for m � n and ρm,n = ρ∗
n,m otherwise. Lm

n (x) denotes the
associated Laguerre polynomial. The normalization factor
representing the success rate is

N =
∑

k

exp

(
− |α|2

Nth + 1

)
Nk+M

th

(Nth + 1)k+M+1

× L0
k+M

(
− |α|2

Nth(Nth + 1)

)
(k + M)!

k!
. (8)

It may be surprising that such an incoherent operation
preserves and even improves the phase of the initial coherent
state. To show that this is really the case we express the density
matrix elements (7) as ρm,n = ρ̃m,n(|α|)eiφ(m−n), where we
have introduced φ as the mean phase of the initial coherent
state, α = |α|eiφ . If we formally represent the amplification
operation by a mapping A such that ρamp = A[|α〉〈α|], we
can see that it commutes with the unitary phase shift operator
Uθ = eiθa†a ,

UθA[|α〉〈α|]U †
θ = A[Uθ |α〉〈α|U †

θ ]. (9)

Consequently, the mean phase of the amplified state is fully
given by the phase of the initial coherent state. Also note that
the amplification effects are completely covered by the density
matrix given by ρ̃m,n(|α|). In this sense, the amplification
procedure is universal with respect to the phase of the initial
state. To analyze the phase concentration effect we can
calculate the canonical phase variance:

µC = 1

N
∑

k

√
(k + M)!

(k + M + 1)!
exp

(
− |α|2

NT H + 1

)

× αNk+M
th

(Nth + 1)k+M+2
L1

k+M

(
− |α|2

Nth(Nth + 1)

)

×
√

(k + M)!(k + 1 + M)!

k!(k + 1)!
. (10)

The expression (10) can be calculated numerically and the
results are presented in Fig. 1. The probabilistic amplification
of the initial coherent state (M = 0) results in a visible
reduction of the phase variance. The mean number Nth of
added thermal photons was optimized to minimize the phase
variance and it is saturating for larger M . The reduction
of the phase variance saturates as well, but already for a
somewhat feasible four-photon subtraction the resulting phase
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FIG. 1. (Color online) Phase concentration in a highly probabilis-
tic amplification using thermal noise addition and photon subtraction.
The separate graphs show the canonical phase variance VC (a),
the optimal number of thermal photons added (b), the gain of the
amplification (c), and the purity of the amplified state (d) as a function
of the number of subtracted photons M . The different bars correspond
to the ideal photon subtraction realized by the annihilation operator
(left) and to the realistic photon subtraction employing a beam splitter
with T = 0.9 and a threshold detector with efficiency η = 0.4 (right).
The color coding given in panel (a) is the same for all the panels.

variance corresponds to the phase variance of a coherent
state with N = 0.36 (as opposed to the coherent state with
N = 0.04 before the amplification). This is equivalent to a
strong amplification |α〉 → |gα〉 with gain g = 3. We can also
look at the process from the amplification perspective and find
out how the amplitude of the state increases. If we consider
(without loss of generality, because the amplification is phase
insensitive) the initial mean phase of φ = 0, the gain of the
amplification can be expressed as 〈(a + a†)/2〉/√N and it is
shown in Fig. 1(c) for various M . The addition of thermal
photons is an incoherent process and the resulting state is
therefore not pure. The purity after the amplification can be
seen in Fig. 1(d).

The nonlinear nature of the amplification is clearly visible
from a change of the contour of Wigner function (taken at
full width at a half maximum) in Fig. 2. The contours are

− 1 0 1 2 3
− 2

− 1

0

1

2

x

p

FIG. 2. Contours of Wigner functions of the states amplified by
the noise addition and the beam splitter tap, similar to conditions
described in Fig. 1. The contours go from left to right as the number
of subtractions increases M = 0, 1, . . . , 6.
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plotted for an initial state with α = 0.2 with a mean phase
value of φ = 0. From the contours of the group of amplified
states we can see that the mean phase of the state is preserved
and the state is displaced in this correct direction. At the same
time the initial circular contour gains a “crescent” shape as
M increases. This is a difference from the ideal noiseless
amplification methods [6,7], which keep the state coherent
(in a suitable limit). However, although the change of shape
of the Wigner function suggests greater phase uncertainty, the
increase of the amplitude of the state results in a smaller phase
variance.

For a physical understanding it is illustrative to consider a
weak coherent state |0〉 + α|1〉 displaced by a weak thermal
noise ρ → ρ + εth(a†ρa + aρa†) and followed by a single-
photon subtraction. The resulting state is N |0〉〈0| + εth(|0〉 +
2α|1〉)(〈0| + 2α∗〈1|) up to a normalization N = N + εth +
4Nεth. The canonical phase variance can be determined
from µ = 2εthα/N , and for small N < 0.1, the reduction
approaches V ∝ 1

4N
, approximating very well the result for

the ideal amplification (2) with g = 2, if εth is low enough.
More generally, if the thermal noise is approximated as an
addition of up to M photons, the M-photon subtraction leads
to phase variance V ∝ 1

(M+1)2N
, which qualitatively matches

the results for the ideal amplification with g = M + 1 (2), as
well as the amplification by coherent addition and subtraction
of M photons (6).

The addition of a thermal noise can be realized by mixing
the signal with a thermal state on a highly unbalanced beam
splitter. The thermal state can be provided either by a thermal
source, in which case the sufficient spatial and spectral overlap
needs to be ensured by suitable filters, or by creating a mixture
of coherent states by a proper random modulation. The benefit
of the first approach lies in conceptually lower demand on
resources, as there is no need for a coherent source of light.
On the other hand, the second approach allows for generation
of mixed states with various kinds of distributions (not just
thermal), which can be used for a further optimization of the
procedure.

A feasible scheme capable of approximately subtracting
M photons, which is required for a physical implementation
of the procedure, is sketched in Fig. 3. It can be built from
a linear coupling (a beam splitter with transmissivity T ) to
tap a part of the optical signal and a threshold measurement
registering at least M0 photons [13]. The quantum efficiency
of the detector can be modeled by a virtual beam splitter with
transmissivity η inserted in front of the ideal detector. The
quality of the outgoing signal depends on the transmissivity
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FIG. 3. (Color online) Realistic scheme for the probabilistic
amplification of a coherent state.

FIG. 4. (Color online) Comparison between the canonical phase
measurement and the heterodyne phase measurement after the
realistic phase concentration. The respective phase variances are
shown in panel (a), while the optimal numbers of thermal photons
are shown in panel (b).

T values, T < 1 translates as loss, which increases the phase
variance. The limited quantum efficiency of the detector only
affects the success rate. However, η that is too low may require
lower T to achieve sufficiently high success rates.

Generally, the amplified state can be expressed as

ρ ′
amp = 1

PS

∫
	

(
β√
T

)
P�

(
β√
T

)
|β〉〈β|d

2β

T
, (11)

where P�(β) = 〈√η(1 − T )β|�|√η(1 − T )β〉 and � de-
notes the positive-detection positive operator-valued mea-
sure (POVM) element, which in the case of the threshold
detector looks like � = 1 − ∑M0−1

k=0 |k〉〈k|. The initial co-
herent state with the addition of thermal noise is repre-
sented by 	(β) = exp(−|β − α|2/Nth)/πNth. The normal-
ization factor PS gives the probability of the success: PS =∫

	(β/
√

T )P�(β/
√

T )d2β/T .

The density operator (11) fully describes the realistically
amplified coherent state and its numerical evaluation is
straightforward. The results are shown in Fig. 1 and we can see
that, although they are quantitatively worse than those for the
ideal subtraction, they follow the same qualitative pattern. The
realistic multiphoton subtraction, even with the low quantum
efficiency η = 0.4, is therefore a sufficient replacement for the
ideal subtraction. Finally, we can check the difference between
the canonical and the heterodyne phase measurements. The
comparison in Fig. 4 shows a good qualitative agreement and
justifies the use of the canonical measurement for the previous
analysis.

V. SUMMARY

We have proposed a probabilistic amplifier for coherent
states. The amplifier setup, based on a thermal noise addition
(instead of a single-photon addition) followed by a feasible
multiphoton subtraction allows one to substantially reduce the
phase variance of a coherent state. Note that the distribution
of the random-noise-like modulation of the signal could be
optimized to achieve better performance. There are also several
possible applications open for future consideration. In quan-
tum key distribution, the amplifier could be conceivably used
in situations when the loss in the quantum channel prevents
the secure key generation. At the same time, the amplifier
is of no use to the eavesdropper because of its probabilistic
nature—any gain in the rare event when the amplification
succeeds is lost in the noise produced when it does not. As
another possible application one could consider a probabilistic
cloning of coherent states. Finally, the amplification itself need
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not be restricted to traveling wave quantum optics. All
the necessary components, the thermal field, the coherent
field, and the single-photon subtraction are also available
in cavity QED [14] and this direction is open for future
investigation.

Note added. Recently, a publication appeared that proposed
another method for a noiseless amplification of coherent states
based on a multiple-photon addition [15].
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Noise-powered probabilistic concentration of
phase information
Mario A. Usuga1,2†, Christian R. Müller1,3†, Christoffer Wittmann1,3, Petr Marek4, Radim Filip4,
Christoph Marquardt1,3, Gerd Leuchs1,3 and Ulrik L. Andersen2*
Phase-insensitive optical amplification of an unknown quantum
state is known to be a fundamentally noisy operation that
inevitably adds noise to the amplified state1–5. However,
this fundamental noise penalty in amplification can be
circumvented by resorting to a probabilistic scheme as
recently proposed and demonstrated in refs 6–8. These
amplifiers are based on highly non-classical resources in a
complex interferometer. Here we demonstrate a probabilistic
quantum amplifier beating the fundamental quantum limit
using a thermal-noise source and a photon-number-subtraction
scheme9. The experiment shows, surprisingly, that the addition
of incoherent noise leads to a noiselessly amplified output state
with a phase uncertainty below the uncertainty of the state
before amplification. This amplifier might become a valuable
quantum tool in future quantum metrological schemes and
quantum communication protocols.

Besides being the subject of a fundamental discussion going
back to Dirac10, the measurement of phase is at the heart of many
quantum metrological and quantum informational applications
such as gravitational wave detection, global positioning, clock syn-
cronization, quantum computing and quantum key distribution.
In many of these applications, the phase is most often imprinted
onto a coherent state of light and subsequently estimated using
an interferometric measurement scheme. Such a phase-estimation
process11 is however hampered by the fundamental quantum noise
of the coherent state, which plays an increasingly devastating role
as the excitation of the coherent state becomes smaller. Small
coherent-state excitations and associated large phase uncertainties
are typical in real systems such as long-distance coherent-state
communication and lossy interferometry.

To reduce the phase uncertainty and thus concentrate the
phase information, the state must be amplified noiselessly. This
can be done probabilistically using either a highly complicated
interferometric set-up of single-photon sources6–8, a sophisticated
sequence of photon-addition and -subtraction schemes9,12 or a very
strong cross-Kerr nonlinearity13. However, aswe show in this Letter,
it is possible to amplify the phase information noiselessly without
the use of any non-classical resources or any strong parametric
interactions. Remarkably, the supply of energy in our amplifier is
simply a thermal-light source.

A schematic of the probabilistic amplifier9 is shown in Fig. 1a.
It is solely based on phase-insensitive noise addition and photon
subtraction. To explain in simple terms why the addition of noise
can help amplify a coherent state, we consider the phase-space
pictures in Fig. 1b. The addition of thermal noise induces random

1Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen, Germany, 2Department of Physics, Technical University of
Denmark, 2800 Kongens Lyngby, Denmark, 3Institute for Optics, Information and Photonics, University Erlangen-Nuremberg, Staudtstr. 7/B2, 91058
Erlangen, Germany, 4Department of Optics, Palacký University 17, listopadu 50, 772 07 Olomouc, Czech Republic. †These authors contributed equally to
this work. *e-mail: ulrik.andersen@fysik.dtu.dk.

displacements to the coherent state, thus resulting in a Gaussian
mixture of coherent states; some with excitations that are larger
than the original excitation and some with smaller excitations.
In the photon-subtraction process, the coherent states with large
excitations are probabilistically heralded, thereby rendering the
state in amixture consisting of themost excited coherent states from
the original Gaussianmixture. As illustrated in Fig. 1b, the resulting
state is amplified and possesses a reduced phase uncertainty.

The probabilistic photon-subtraction procedure can be approx-
imated by a largely asymmetric beam splitter combined with a
photon-number-resolving detector (PNRD; see Fig. 1a). A small
portion of the displaced thermal state is directed to the photon
counter and when a pre-specified number of photons is detected,
the transmitted state is heralded. Such an approach for photon-
number subtraction has also been employed for the generation of
coherent-state superpositions14,15. However, in contrast to previous
implementations that were limited to the demonstration of two-
photon subtraction16, here we subtract up to four photons.

To elucidate the function of the amplifier, theoretically,
we consider the amplification of a small-amplitude (|α| � 1)
coherent state that can be approximately described in the two-
dimensional Fock space: |α〉 ≈ |0〉 + α|1〉. As the amplitude is
small, the canonical-phase variance of this state is to a very good
approximation given by17

VC≈
1
|α|2

(1)

This variance represents the fundamental uncertainty in estimating
the phase of the coherent state when a hypothetically ideal
phase measurement is employed18. The aim is to produce an
amplified state with a phase variance reduced with respect to the
coherent-state variance in (1), thereby concentrating the phase
information. If a conventional phase-insensitive amplifier is used
to amplify the coherent state, the resulting variance is larger
than (1) (see Supplementary Information). On the other hand,
if our amplifier is employed with weak Gaussian noise addition
followed by single-photon subtraction, the resulting state is9

ρ̂ ≈
1

|α|2+Nth+4|α|2Nth

× [|α|2|0〉〈0|+Nth(|0〉+2α|1〉)(〈0|+〈1|2α∗)]

with the canonical-phase variance

V amp
C ≈

1
4|α|2

(
1+
|α|2

Nth

)
−1
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Figure 1 | Basic concept and experimental set-up. a, Principal set-up. Noise is incoherently added to an input state. Subsequently, a part of the beam is
tapped off and measured by a PNRD. Results of that measurement that surpass a specified threshold M, herald the output state. b, Principal operation in
phase space. A coherent state (yellow) serves as the input. The dashed line indicates the phase variance. Thermal noise is added to this input state
resulting in a displaced thermal state (green). The output state (blue) is reshaped and the resulting phase variance is reduced compared with the input
state. c, Experimental set-up. An external-cavity diode laser with fibre mode cleaning (FMC) acts as the source for the experiment and is split into a local
oscillator (LO) and an auxiliary oscillator. The signal is prepared by a combination of two electro-optical modulators (EOM), a half-wave plate (HWP) and
attenuation (Att.). A polarizing beam splitter (PBS) removes the auxiliary oscillator. Part of the signal is tapped by a 80:20 beam splitter and coupled
through a multimode fibre into the PNRD. This measurement is conditioning the output state, which is characterized by a homodyne measurement. The
phase of the local oscillator is controlled by a piezoelectric transducer (PZT).
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Figure 2 | Theoretical gain and normalized phase variance versus the mean number of added thermal photons. a, The canonical variance normalized to
the corresponding variance of the input coherent state. b, The gain generally grows with the number of photons in the added thermal noise and the
threshold M of added thermal photons for an input coherent state of amplitude |α| =0.48.

where it is assumed that the average number of incoherently
added photons is Nth � 1. We quantify the performance of
the amplifier by the normalized phase variance, Γ = V amp

C /VC,
which is smaller than one for a noiseless operation. For the
above approximative example, if |α|2 � Nth, we find that the
normalized variance approaches Γ = 1/4. Another parameter that
will be used to evaluate the amplifier is the gain g = |β|/|α|
(where β is the average amplitude of the output state), be-
ing g = 2 for the above example. We therefore see that by
simply adding a small amount of noise to the input state
followed by single-photon subtraction, it is possible to cre-
ate an output state with twice the amplitude and with a re-
duced phase variance.

On the basis of a more general model (as presented in the
Supplementary Information), in Fig. 2 we plot the normalized
phase variance and the gain as a function of the average number

of added thermal photons, where M denotes the threshold for the
number of photon subtractions. Figure 2 illustrates three interesting
aspects: the phase-noise-reducing operation works even when the
parameters go beyond the simple approximation considered above,
the effect of the amplification improves with the subtraction of
more photons and the amount of noise must be relatively large
for the amplification to work well. These aspects also follow the
intuitive picture discussed above: large noise addition will partly
displace the coherent state in a radial direction in phase space
with a correspondingly large magnitude, and the states with the
largest amplitude (associated with strongly amplified states) are
heralded by high-photon-number subtractions. We also note that
the amount of added noise that minimizes the canonical variance
depends solely on the magnitude of the input coherent state but
not on its phase. The amplifier is thus capable of concentrating an
unknown phase of a coherent state.
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were calculated for states fitting to experimentally derived parameters.
b, The canonical-phase variance deduced from the experimental data (light
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c, Gain for the input coherent state for different thresholds M.

A laboratory implementation of the amplifier is shown in Fig. 1c.
Our source is a grating-stabilized continuous-wave diode laser
operating at 809 nm with a coherence time of 1 µs. The laser
output is spatially cleaned in an optical fibre, and subsequently
split to serve as a local oscillator for homodyne detection and
as an auxiliary beam for state preparation. We use a pair of
electro-optical modulators for the preparation of the displaced
thermal state (corresponding to a coherent state with added thermal

noise) in a polarization mode orthogonal to the polarization of
the auxiliary mode (see the Methods section). The duration of
the prepared pulses is 800 ns. A portion (20%) of the prepared
state is tapped off in an asymmetric beam splitter and measured
with an avalanche photo detector operating in an actively gated
mode such that the dead time (50 ns) is much shorter than the
pulse duration. This means that the avalanche photo detector
can be used as a single-photon counter provided that the mean
number of photons in the detected pulse is very small. The
transmitted part of the state is passed on to the homodyne
detector where it interferes with a phase-controlled local oscillator.
This provides quadrature measurements of the emerging states
under any phase-space angle. The measurement outcome is
sent to the computer where it is postselected according to the
result of the photon-counting measurement. On the basis of the
resulting data points, we reconstruct the density matrix of the
heralded state using a maximum-likelihood algorithm19,20. We
correct the data for the inefficiency of the homodyne detector to
reconstruct the actual input state and the amplified output state
(see the Methods section).

From the density matrices, we construct the Wigner functions
for the input state and the amplified output states for different
photon-number subtractions as illustrated in Fig. 3. Here we
consider an input state excited along the amplitude quadrature axis
with 〈X〉 = 0.431, thus |α|2 = 0.186, and a thermal-noise addition
corresponding to 〈Nth〉 = 0.15. The amplification factor for this
experiment is summarized in Fig. 4c. We also reconstruct the phase
distributions (see the Methods section) for different subtractions,
the results of which are shown in Fig. 4a. We clearly see that as
the number of subtractions increases, the distribution becomes
narrower, and thus the phase information is concentrated. These
results are summarized in Fig. 4b.

To optimize the performance of the amplifier—that is, to
minimize the phase variance—the amount of added thermal
noise should be chosen appropriately with respect to the input
coherent-state amplitude. Furthermore, we note that having
detailed information about the input alphabet, the structure of the
noisy displacements can be tailored accordingly, thereby markedly
reducing the amount of energy used to drive the amplifier. For
example, if the input is a phase-covariant coherent-state alphabet,
the optimized structure of the noisy displacement is also phase
covariant. Such tailoring of the displacements as well as applications
of the amplifier will be interesting directions for future research.
Finally, we note that the noise-addition process can also be carried
out with a linear amplifier. Such an approach will not only
add thermal noise to the input state but will also displace it
coherently in the preferred direction, thereby further concentrating
the phase information.

We have reduced the phase uncertainty of a coherent state of
light through noiseless probabilistic amplification. In contrast to
previous approaches to noise-free amplification, the amplifier is
based neither on an ample supply of non-classical resources nor
on strong parametric interactions, but solely on Gaussian noise
addition and photon counting. Owing to its pivotal properties
such as simplicity and robustness, we expect that this approach to
probabilistic noise-free amplification will be of interest for a large
variety of experiments and protocols involving phase estimation
such as quantummetrology and quantum communication.

Methods
Experiment. The experimental set-up in Fig. 1c is described in the following.
The laser source is monitored, to assure quantum-noise-limited signal states. The
states are prepared by two electro-optical modulators and a half-wave plate. The
modulators displace the signal state using the orthogonally polarized auxiliary
oscillator mode, which is relatively bright21. After the modulators’ calibration,
we can displace the signal state to any coherent state with a maximum photon
number corresponding to the mean photon number in the auxiliary oscillator
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mode nmax = |αAO|

2. The signal mode can be chosen to be in an arbitrary
mixed state, provided that the state’s P-function is positive. We can therefore
generate the displaced thermal state applying a suitable modulation sequence
to both electro-optical modulators. The state is modelled with a finite set of
(more than) 103 coherent states, randomly picked from a two-dimensional
normal distribution. The random modulation sequence is varied and repeated
throughout the measurement.

The tap beam is focused into the fibre coupled PNRD (for details, see
refs 22,23). The transmitted part of the beam is sent to a homodyne detector,
which measures the signal with a continuously scanned local oscillators’ phase.
The scanning frequency is chosen to be 21mHz, leading to an effective phase drift
of only 1.6mrad within the modulation sequence. This value is negligible from
an experimental point of view so that the local oscillator’s phase is considered
constant within a single modulation sequence. The phase angle needed in the
tomography was estimated with a series of phase-calibration signals prepended
to the modulation sequence. The main source of error in the set-up is the
drift of the modulators. To compensate for this drift, the calibration point was
continuously adjusted.

As the homodyne detector is not a part of the phase-concentration scheme
itself but only implemented in the set-up to prove the effect of the scheme, we do
not want to take its imperfections into account in the analysis. We assume therefore
perfect detection. The amplitude of the coherent input state |α| is then inferred
from the measured mean photon-number values in the imperfect PNRD and the
ideal homodyne detector (HD)

|α|2= |αHD|
2
+

1
ηPNRD

|αPNRD|
2

where the PNRD’s quantum efficiency was calibrated to be ηPNRD = 0.63±3%
using the overall quantum efficiency of the homodyne detector. This procedure is
preferable as it does not demand an accurate knowledge of the input coherent state’s
amplitude, the splitting ratio and the losses in the homodyne detector.

Theory. Each measurement procedure devised to estimate a phase of a given
quantum state can be characterized by a real semi-definite matrix H . The
actual probability distribution of the estimated phase value can be obtained as
P(θ)=Tr[ρ̂F̂(θ)], where F̂(θ)= 1/2π

∑
∞

m,n=0exp(iθ(m−n))Hmn|m〉〈n| (ref. 17).
To characterize the quality of phase encoding by a single value, we can use the
Holevo phase variance24 V = |µ|−2−1, where µ= 〈exp(iθ)〉. The fundamental
limit of the phase estimation is obtained for the canonical measurement, in which
the operator F̂(θ) projects onto the idealized phase state

∑
n=0
∞eiθn|n〉 and H ≡ 1.

The canonical-phase variance is therefore given by

VC=

∣∣∣∣∣∣Tr
 ∞∑

n=0

|n〉〈n+1|ρ̂


∣∣∣∣∣∣
−2

−1
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We present a probabilistic cloning scheme operating independently of any phase reference. The scheme is based
solely on a phase-randomized displacement and photon counting, omitting the need for nonclassical resources and
nonlinear materials. In an experimental implementation, we employ the scheme to clone coherent states from a
phase covariant alphabet and demonstrate that the cloner is capable of outperforming the hitherto best-performing
deterministic scheme. An analysis of the covariances between the output states shows that uncorrelated clones
can be approached asymptotically. This simultaneously demonstrates how the effect of loss on coherent states
can be compensated via noiseless preamplification.

DOI: 10.1103/PhysRevA.86.010305 PACS number(s): 03.67.−a, 03.65.Ta, 42.50.Lc

In classical physics there are no fundamental limits to the
performance of an amplifier or to the accuracy of copying a
state of the system. The reason is that measurements can, in
principle, gain complete knowledge about the classical state,
from which it is possible to generate arbitrarily many copies
or a perfectly amplified version of the initial state. In general,
this does not hold true in the quantum regime, since the laws
of quantum mechanics forbid us to gain complete information
about all aspects of reality on a single copy of a quantum
state. This is widely known as the no-cloning theorem [1].
However, the no-cloning theorem does not prevent the creation
of imperfect copies of a state [2]. These can, for instance, be
obtained by amplification and subsequent splitting [3]. This
situation also emerges naturally when an amplifier is used
prior to a lossy channel to compensate for energy loss. In this
scenario, one of the clones is lost to the environment [4], while
the other clone is preserved.

In general, the amplification of an unknown coherent state
|α〉 is accompanied by the addition of excess noise [5–7].
This noise is responsible for the fundamental bound for
deterministic cloning, where the average fidelity of clones is
limited to F � 2

3 . Nevertheless, the excess noise of amplifiers
can be drastically reduced by relaxing the constraint of
deterministic operation. An ideal amplify-split cloner for
coherent states is described by the two-step transformation
|α〉 |0〉 → |√2α〉 |0〉 → |α〉 |α〉. In the probabilistic regime,
the amplification can for small amplitudes |α| be achieved
with high accuracy as proposed in Refs. [8–11] and ex-
perimentally shown in Refs. [12–15]. Yet these approaches
require perfect photon number detectors, single-photon an-
cillary states. and/or high-order nonlinear interactions, thus
rendering the physical implementation challenging. Moreover,
these approaches rely on additional key ingredients such as
interferometric stability, perfect coincidences of single-photon
operations, or a phase reference. The physical meaning and
necessity of such a phase reference was discussed in an
extensive debate [16–21]. It has not been clarified what kind
of quantum operations can be realized independently of any
of these ingredients.

In this Rapid Communication, we demonstrate a phase
covariant cloning scheme capable of probabilistically gen-
erating ideal clones of coherent states, without the above-
mentioned resources. We experimentally show that the cloner
outperforms the bound set by the hitherto best-performing
deterministic scheme [22] which is based on an optimal
phase measurement. The cloner is of the amplify-split type
and consists of solely elementary linear optical elements
and a photon number resolving detector. The amplification
is achieved probabilistically by first applying an optimally
tailored displacement to the input state and subsequently
heralding the output depending on the result of a photon
number threshold measurement on a part of the displaced state.
The probabilistic amplifier may be used as a preamplifier prior
to a lossy channel. In contrast to classical amplifiers, the loss
is then compensated without introducing correlations to the
environment.

Our cloning strategy consists of three steps: displacement,
heralding measurement, and splitting, as sketched in Fig. 1(a).
First, the input state is randomly displaced in phase space
[D̂(�)] according to a phase-independent probability distribu-
tion �. This is followed by probabilistic subtraction of photons
via a photon number resolving detector (PNRD). Successful
amplification is heralded whenever the detected number of
photons surpasses a certain threshold value M . This strategy
makes use of the classical correlations among the detected
number of photons and the state’s amplitude arising from the
phase-randomized displacement [15]. The threshold parameter
M offers the possibility to tune the trade-off between output
fidelity and success rate: Increasing M will result in increased
fidelity, however, at the expense of a lower success rate. In
the final step the amplified state is split symmetrically to
obtain the two copies of the input state. In contrast to other
cloning protocols [22,23], our scheme disregards the phase
information, as neither an external phase reference, which
could be sent along with the quantum states, nor an internal
phase reference, e.g., a bright local oscillator, is provided. We
merely need the definition of the input state’s mode. A detailed
demonstration of the cloner’s phase-insensitive performance
can be found in the Supplemental Material [24].

010305-11050-2947/2012/86(1)/010305(5) ©2012 American Physical Society
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FIG. 1. (Color online) (a) Schematic of the cloning scheme. Two
identical clones ρ̂1,2 are created by probabilistic amplification and
subsequent symmetric splitting. (b) Evolution of a coherent state in
phase space during the cloning process.

The phase-insensitive annihilation â and creation â† op-
erators constitute the fundamental building blocks of any
quantum operation [25]. A specific class of operations that
can be realized without a phase reference is described as
ρ̂ → ∑

n Ânρ̂Â
†
n, where the operators Ân are proportional to

an arbitrary product of â and â†. An elementary probabilistic
amplification can be achieved without a phase reference
for Ân = âmâ† m δmn [10], which amounts to adding and
subtracting a specific number of photons m. However, a perfect
coincidence between the additions and the subtractions is
required for this operation. This constitutes a requirement
in the particle picture, which is similar to providing a phase
reference in the wave picture. In our scheme, this constraint
is dropped by replacing the single-photon addition by the
phase-randomized displacement.

In the following, we discuss the phase covariant cloner for
an alphabet with a fixed amplitude and continuous phase. In
Ref. [22], it has been shown that for such alphabets fidelities
of at least F ≈ 0.85 can be achieved deterministically, where
the prerequisites are unit detection efficiencies, optimal phase
measurements, and feed forward. An optimal scheme is not
known, but this scheme is to the best of our knowledge
the hitherto best-performing deterministic approach. We have
specifically tailored the optimal displacement for the cloning
of this alphabet. Due to the phase covariance of the alphabet,
the task to find the optimal displacement distribution is
essentially a one-dimensional problem and we only need to
optimize the radial distribution of the displacement. Since
the fidelity is linear in the density matrix, the optimal
displacement distribution reduces to a fixed amplitude and
a random phase. A detailed proof of the optimality of the
displacement distribution can be found in the Supplemental
Material [24]. Insight into the cloning procedure can be gained
by considering a weak coherent state |α〉 ∝ |0〉 + α|1〉, with
|α| � 1. The state after the phase-randomized displacement
can be expressed as

ρ̂ ∝ 1

2π

∫ 2π

0
D̂(|α|eiφx)|α〉〈α|D̂†(|α|eiφx)dφ, (1)

where x is the ratio between the amplitude of the displacement
and the original state’s amplitude. Subtracting a single photon
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FIG. 2. (Color online) Experimental realization of the cloning
scheme.

transforms this state to

ρ̂a ∝ |α|2[|0〉〈0| + x2(|0〉 + 2α|1〉)(〈0| + 2α∗〈1|)], (2)

which is a mixture of the vacuum state and the original state
approximately amplified with an amplitude gain of two (i.e.,
four times the original power). A detailed derivation of Eq. (2)
can be found in the Supplemental Material [24]. From this
state, four clones looking as

ρ̂clone ∝ |α|2[|0〉〈0| + x2|α〉〈α|] (3)

can be generated, and if the parameters are chosen such that
|α|2 � |xα|2 � 1, perfect clones are obtained. However, the
usability of the cloner is by no means limited only to the
extreme values required by the approximation; with the proper
choice of x and a multiphoton subtraction, we can achieve a
respectable range of gains even for |α| ≈ 1. Interestingly, for a
fixed gain, the required value of x is quasiconstant for several
numbers of subtracted photons, which allows for a delayed
choice of M and the trade-off between the success rate and the
fidelity of the clones.

The experimental setup is sketched in Fig. 2. Our source is
a grating-stabilized cw diode laser at 809 nm with a linewidth
of 1 MHz. After passing a fiber mode cleaner, the beam is
asymmetrically split into two parts, an auxiliary beam for
the signal preparation and a local oscillator (LO) used only
in the verification stage. The signal states are generated in
time windows of 800 ns at a repetition rate of 100 kHz. A
combination of two electro-optical modulators (EOMs) and
a half-wave plate (HWP) is used to generate and randomly
displace a coherent state by transferring photons from the
polarization mode of the auxiliary beam to the orthogonal
signal polarization mode. A small portion (≈17%) of the
state is tapped off via an asymmetric beam splitter and sent
to an avalanche photodiode (APD) operated in an actively
gated mode. The dead time (50 ns) is much shorter than the
pulse duration, allowing to employ the APD as a PNRD [26].
The heralded and effectively amplified state is finally split
on a symmetric beam splitter to obtain the two clones. To
quantify the fidelity between the input state and the clones, we
perform full tomographies of both outputs. For this purpose,
the amplified state is spatially mode matched with the LO
on a polarizing beam splitter (PBS) but before the state is
split into the clones. Up to this stage signal and LO are
still residing in orthogonal polarization modes. The outputs
of the beam splitter are directed to balanced homodyne
detectors embedded in a Stokes measurement setup [27]. The
combination of a HWP and a quarter-wave plate (QWP) allows
for the adjustment of the relative phase between the clone
and the LO and therefore for simultaneous measurements of
arbitrary quadratures at each output. To enable tomography,
the LO’s phase is varied harmonically via a piezoelectric
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transducer to provide quadrature measurements of all phase
angles. An accurate inference of the measured quadrature
is provided by bright phase calibration pulses that are sent
in between the signal states. The homodyne data and the
number of detected photons are acquired simultaneously by a
computer. Finally, we reconstruct the clones’ density matrices
employing a maximum likelihood algorithm [28,29]. The
homodyne detectors are only implemented to determine the
performance of the scheme. In order to reconstruct the density
matrix—unaffected by any imperfection of the verifying
detection system—we assume unit quantum efficiency for the
homodyne detectors and determine the performance not using
the actual input amplitude but the following inferred value
using ηHD1,2 = 1: |α|2 = |αHD1 |2 + |αHD2 |2 + 1

ηPNRD
|αPNRD|2,

with ηPNRD = 63 ± 3%. |αHD1,2 |2 and |αPNRD|2 correspond to
the actually measured mean photon numbers in the homodyne
detectors and the PNRD, respectively (see the Supplemental
Material for details [24]).

The limited fidelity predicted by the no-cloning theorem is,
in the case of an amplify-split cloner, due to the addition of
excess noise in the amplification step. In our scheme, the excess
noise is a remainder of the random displacement. This noise
leads to classical correlations among the two clones which
can be characterized by measuring the two-mode covariance
matrix. Deterministic Gaussian strategies, for instance, add
one unit of vacuum noise to the clones, resulting in a
uniform covariance of 0.5. Probabilistic strategies are capable
of generating ideal clones, having a vanishing covariance,
asymptotically. However, in a realistic implementation a
certain amount of excess noise is unavoidable.

We measure the covariances for various threshold param-
eters and compare the results to the theoretical predictions.
The results for a coherent state with amplitude |α| = 1.36
excited along the X quadrature are presented in Fig. 3. In
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FIG. 3. (Color online) Covariance matrix elements for the clones
of a coherent state with initial amplitude α = 1.36 for the randomly
displaced state (M = 0) and threshold parameters from one to five
photon subtractions. The displacement parameter was chosen for all
M to be x = 0.5.

the experiment, we lock the LO’s phase via a feedback loop
and adjust the HWP and QWP at the detector stages to
measure four different configurations to attain the in-phase
terms Cov(X1,X2), Cov(P1,P2) as well as the out-of-phase
terms Cov(X1,P2), Cov(P1,X2). The symmetric copies exit
the cloner with identical phases, such that no out-of phase
correlations are expected from the theory. This is confirmed by
the experiment, apart from statistical fluctuations, which can
become more pronounced with increasing threshold parame-
ters and decreasing success rate. Without heralding (M = 0),
the outputs have equal in-phase covariances. Heralding purifies
the mixture by adding a bias to the high-amplitude parts
of the mixture. Consequently, both in-phase covariances
decrease with rising threshold. We find that the covariance
along the direction of the state’s excitation in phase space (for
the state considered here: the X quadrature) Cov(X1,X2) de-
creases faster than for the orthogonal quadrature Cov(P1,P2).
In a simplified picture, the heralding process cuts off the
low-amplitude part of the displaced state, leaving only a
segment of the initial ring-shaped displacement, which mainly
spreads in the direction orthogonal to the excitation of the
input state [see Fig. 1(b)]. We also find this behavior in
the full theoretical model, which is in good agreement with
the results.

The primary figure of merit for a cloning device is the fi-
delity. We measure the average fidelity F = 1

2 〈α|(ρ1 + ρ2)|α〉
of both clones, to avoid a bias stemming from a possible
imbalance of the two outputs. The results for amplitudes in
the range of |α| ∈ [0.4,2.1] and threshold parameters of up
to five photons are shown in Fig. 4 and are compared to
our theoretical model for the implementation with realistic
parameters. Additionally, the fidelities achievable with the
deterministic scheme from Ref. [22] serve as a threshold.
For amplitudes of up to |α| ≈ 1.4 the performance of our
probabilistic cloner is comparable to the deterministic scheme
at a heralding threshold of M = 2 and is superior for M =
3 and above. At higher amplitudes, the fidelities of the
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FIG. 4. (Color online) Experimental cloning fidelities and success
rates for various input amplitudes and different threshold parameters.
The fidelity is maximized in each point over a suitable set of
displacement parameters x.
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FIG. 5. (Color online) Contour plots of the reconstructed Wigner
functions of a single clone for the nonheralded displaced state
and for heralding thresholds of up to five detected photons. The
coherent input state with |α| = 1.93 is indicated by the white contour
line, corresponding to the height at the standard deviation. The
displacement parameter for all M is x ≈ 0.52.

deterministic scheme can be surpassed using higher heralding
thresholds. We find that the highest fidelities are achieved at
effective amplitude gains slightly below unity, where the deficit
in amplitude is overcompensated by the reduced residual
displacement noise. The error bars represent the statistical
fluctuations over repeated realizations of the experiment. The
measurements were conducted over a period of several weeks,
in which variations of up to ±2% from the average tapping
ratio (17%) occurred due to drifts in the setup.

The success probabilities corresponding to the measure-
ments of the presented fidelities are also shown in Fig. 4 and
compared to the theoretical predictions. A higher threshold
parameter and hence an increased fidelity comes at the price
of a lower rate of success. However, with rising amplitude
the probability to detect a certain number of photons also

increases. An example for the experimentally generated clones
according to different heralding thresholds is presented as
reconstructed Wigner functions in Fig. 5 for an input state with
|α| = 1.93. In this representation the heralding-induced tran-
sition from the randomly displaced state (M = 0) to a heralded
high-fidelity clone (M = 5) can clearly be seen. The analysis
of a single clone reveals the effect of probabilistic preamplifi-
cation prior to a 3-dB lossy channel for coherent states. This
form of loss compensation, similar in philosophy to Ref. [30],
can completely suppress the loss-induced decoherence on a
coherent state. In the deterministic regime, the amplification
process is necessarily noise afflicted. In the amplification of
coherent states this means that classical correlations arise as
a consequence of the splitting of the wave. This situation is
different from the splitting of a single-photon state, which
results in strong particlelike anticorrelation among the output
fields [31]. Interestingly, the probabilistic preamplification of
coherent states will in principle not introduce any correlations
to the environment.

In conclusion, we have proposed and experimentally real-
ized a cloner based on a probabilistic amplifier with minimal
resources. In doing so, we have shown that quantum cloning
without phase resources is feasible. In good agreement with the
theory, we were able to generate high-fidelity clones, beating
the hitherto best-performing deterministic approach. We dis-
cussed that our scheme allows for a delayed choice between the
fidelity and the success rate. Furthermore, the clones exhibit
reduced correlations, pointing towards the noiseless nature of
the amplification step, which is important if the amplifier is
used for loss compensation. After completing our experiment,
another form of loss compensation was tested experimentally
for very nonclassical particlelike states in Ref. [32].
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When measuring the phase of quantum states of light, the optimal single-shot measurement implements a
projection on the unphysical phase states. If we want to improve the precision further we need to accept a reduced
probability of success, either by implementing a probabilistic measurement or by probabilistically manipulating
the measured quantum state by means of noiseless amplification. We analyze the limits of this approach by
finding the optimal probabilistic measurement that, for a given rate of success, maximizes the precision with
which the phase can be measured.
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Phase is a central concept in both classical and quantum
optics. It was, however, a matter of lengthy dialogue before
the quantum description of phase was established. The initial
attempts of Dirac to treat phase as a canonical conjugate to
photon number failed because it is impossible to represent
phase by a quantum mechanical observable [1]. As a conse-
quence, phase cannot be projectively measured; it can only
be estimated (or guessed) by analyzing the results of other
measurements. Despite this, phase states do exist [2] (even
if they are not orthogonal) and they were eventually used to
construct a well-behaved phase operator [3]. Other attempts
to describe phase properties of quantum states relied on the
measurement-related phase distribution [4]. Both approaches
were later reconciled with the fundamental canonical phase
distribution [5].

The canonical phase distribution characterizes phase prop-
erties of a quantum state and it is completely independent
of its photon number distribution. It can be used to obtain a
wide range of quantities related to phase estimation, but it also
determines how much information about the phase of the state
can be obtained by performing a measurement only on a single
copy of it. True, the ideal canonical phase measurement does
not and cannot exist, but several approximative approaches
have been suggested [6,7].

Aside from improving the actual detector scheme, the
overall performance of phase measurement can be enhanced
also by specific alteration of the measured quantum state. A
highly nonclassical quantum state can in principle lead to an
unparalleled precision [8], while weakly nonclassical states
are both beneficial and experimentally feasible [9]. However,
if the state is unaccessible prior to phase encoding, we need
to rely on operations that can enhance the amount of phase
information already carried by the scrutinized state. Such
operations are commonly referred to as noiseless amplifiers
and a great deal of attention was recently devoted both to the
concept [10] and to the experimental realizations [11]. The
cost of this improvement comes in the reduced success rate of
the operation. The amplification is therefore not very practical
when the measurements can be repeated, but it may be useful
when the event to be detected is rare and we need to be certain
that the only measurement outcome obtained corresponds to
the theoretical value as closely as possible.

However, even in the scenarios in which the probabilistic
approach is worth considering, it would be more prudent to

design an actual probabilistic measurement of phase. Such a
measurement would be conceptually similar to methods of
unambiguous discrimination of quantum states [12], except
that a truly errorless detection would be possible only in the
limit of zero probability. Rather than this regime of limited
interest, the question is how does reducing the success rate of
the measurement help us measure the phase more precisely.
Maybe even more importantly, we ask what the theoretical
limits of this approach are. In this paper we attempt to answer
these questions.

Let us start by reviewing what we actually mean by
the term “phase measurement.” Phase has a well-defined
meaning only in the context of an interferometric setup,
where it expresses the relative length difference between the
two optical paths. In the context of continuous-variable (CV)
quantum optics [13], phase is often considered a stand-alone
property. However, this is only because the other path in the
interferometer, represented by the local oscillator, is taken
for granted. In a sense this is justified, as the local oscillator
is intense enough to be, for all intents and purposes, just a
classical reference framing the associated quantum system.
Measuring the phase of the quantum system is then equivalent
to discerning a value of the parameter φ, which is encoded into
the quantum state by means of an operator exp(iφn̂), where n̂

is the photon number operator. Apart from special cases it is
impossible to determine the parameter φ perfectly. Rather than
complete knowledge, the result of the measurement provides
the observer just with the best guess of the parameter, where the
quality of the guess depends on both the state of the measured
system and the phase measurement employed.

The simplest single-shot measurement of the phase of opti-
cal signals relies on simultaneous measurement of quadrature
operators X and P , corresponding to the Hermitian and the
anti-Hermitian part of the annihilation operator. The phase can
be then deduced from the measurement results x ′ and p′ by
taking φ = tan−1(p′/x ′). Of course, in addition to knowledge
of the phase, this particular measurement also provides us with
knowledge of the energy of the state. Therefore, the obtained
phase information is not as complete as it could be.

The best possible measurement that can be imagined is
the so-called canonical measurement of phase. It can be
mathematically described as a projection on idealized phase
states |θ〉 = ∑∞

k=0 eiθk|k〉. These phase states are not normal-
ized, which makes them similar to eigenstates of continuous
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operators (such as position and momentum), but they are also
not orthogonal. The nonorthogonality is actually responsible
for the impossibility of measuring phase completely because
a single measured value of θ is not exclusive just to a
single phase state. For any quantum state ρ̂ the results of
the canonical phase measurement can be characterized by the
probability distribution P (θ ) = Tr[ρ̂|θ〉〈θ |], i.e., the canonical
phase distribution. The shape of the distribution is solely given
by the employed quantum state; the encoded phase value is
represented only as a linear displacement. For a particular
measured value θ the value P (θ ) is related to the probability
that the measured value is the encoded value. Simplistically,
we can say that for any quantum state, the quality of phase
encoding is given by the width of the canonical distribution.
This can be formally expressed by evaluating the variance of
the phase distribution, but it is actually more convenient to use
a different quantity that takes into account the periodicity of
the phase in the interval |0,2π〉 [14]. The new quantity is the
phase variance V = |μ|−2 − 1, where μ = 〈exp iθ〉 [15]. The
phase variance is completely independent of displacement in θ

and therefore is completely determined by the state ρ̂. We can
also see that the phase variance solely depends on the value of
the parameter μ, which we are going to use from now on.

For an arbitrary pure quantum state

|ψ〉 =
∞∑

n=0

cn|n〉, (1)

the value of μ can be found as

μ =
∞∑

n=0

cnc
∗
n+1. (2)

If we fix the magnitudes of the individual coefficients, μ will
be maximized when all the coefficients are real and positive.
For quantum states from a limited-dimensional Hilbert space,
the parameter μ can be straightforwardly maximized and
optimal states for phase encoding can be found [6,16,17]. The
existence of such ideal states tells us that there are limits to
how well the phase can be encoded in a limited-dimensional
Hilbert space. In contrast, if the Hilbert space is infinite,
which is the case in CV quantum optics communication, it
is in principle possible to encode the phase perfectly, in such
the way that μ = 1 and consequently the phase variance is
zero. As this is obviously the case in classical communication,
where phase can be encoded and decoded with arbitrary
precision, the inability to measure phase in quantum physics
stems from employing quantum states that are so weak their
Hilbert space is effectively limited. However, there is a key
difference between these states and states from a Hilbert
space with factually limited dimension. The difference is that
the infinite-dimensional Hilbert space offers a possibility of
measuring the state arbitrarily well if we accept a reduced
probability of success.

The idea that measurement can be improved when we
accept a reduced probability of success is not a new one. When
discriminating quantum states drawn from a finite ensemble,
one can accept the existence of inconclusive results (reduced
success rate) in order to reduce the probability of erroneous
result to zero [12]. Similarly, when measuring a continuous
parameter such as phase, it is possible to conditionally

transform the quantum states in such a way that the subsequent
measurement leads to more precise results [10,11]. Taken
as whole, the combination of probabilistic operation and
measurement is essentially a probabilistic measurement. In
the following we develop a unified picture describing the
probabilistic measurement of the phase of a quantum state
and derive bounds for the optimal one. Namely, we will look
for such a measurement that, for a given probability of success,
yields the best possible result.

The extension of the canonical measurement of phase into
the probabilistic regime can be represented by a set of operators
�φ , each of them corresponding to a positive detection event of
value φ and a single operator �0 representing the inconclusive
results. Together these operators form a positive-operator-
valued measure (POVM). For the canonical deterministic
measurement of phase these operators are �

(D)
φ = 1

2π
|φ〉〈φ|.

Keeping the pure-state projector structure intact, we can
express the probabilistic POVMs as

�
(P )
φ = 1

2π
F |φ〉〈φ|F †, �

(P )
0 = 1 −

∫
�

(P )
φ dφ. (3)

Here F = diag(f0,f1, . . .), where |fj | � 1 for all j = 0,1, . . .,
is an operator diagonal in Fock space. It is practical to represent
the probabilistic measurement by a filter, transmitting and
modifying the quantum state with some limited probability,
followed by the deterministic canonical phase measurement.
The operator F then plays the role of the probabilistic filter
and the task of finding the optimal measurement is reduced to
finding the optimal operator F .

After the first glance at the problem, one issue immediately
becomes apparent. For any quantum state ρ, the probability of
successful measurement P = 1 − Tr[ρ�

(P )
0 ] is dependent on

the choice of the measured state. The optimal measurement
therefore needs to be tailored to a specific state or to a class
of states. However, let us first approach the task in a general
way. Suppose we have an input quantum state (1). For phase
encoding it is best when all the coefficients cn are real and
positive, so we will assume this is the case [18]. The act of the
filter transforms this state into a new one

|ψf 〉 = 1√
P

∞∑
n=0

fncn|n〉, (4)

where P = ∑∞
n=0 f 2

n c2
n is the probability of success and the

filter parameters fn are also considered real and positive. For
any given probability P , the act of finding the optimal filter
relies on maximization of

μ =
∞∑

n=0

fnfn+1cncn+1 (5)

under the condition
∑∞

n=0 c2
nf

2
n = P . The problem can be

reduced to solving the system of equations

fn−1an−1 + fn+1an = λfnxn,

n = 0,1, . . . , (6)
∞∑

n=0

xnf
2
n = P,
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where an = cncn+1, xn = c2
n, f−1 = 0 by convention, and λ

is the Lagrange multiplier. Finding the solution under the
most general conditions is not an easy task. Fortunately, there
are some simplifications that can be made, provided we are
applying the filtration to the practically significant coherent
states.

A coherent state |α〉 = e−|α|2/2 ∑∞
k=1

αk√
k!

|k〉 can be consid-
ered a quantum version of a classical complex amplitude of
light. It can be used to describe the state of light produced
by a well-stabilized laser and it has a place both in classical
communication [19] and in quantum cryptography [20], both
of which can employ phase encoding. Coherent states are
fairly well localized in the Fock space: For any coherent state
there always exists a finite N -dimensional Fock subspace
such that the probability of the state manifesting outside of
it can be made arbitrarily small. As a consequence, those
higher Fock dimensions do not significantly contribute to the
state’s properties and the values of the respective filters can
be set to one, i.e., fn = 1 for all n � N . Of course, with
severe filtering leading to extremely low success rates, some
previously dismissable Fock numbers can start being relevant,
but this can be remedied by choosing an even higher photon
number N ′ as the new threshold of significance.

This dramatically simplifies the process of finding the
optimal filter. All the filter coefficients for n = 0, . . . ,N can
be now expressed in the form

fn = f0Pn(λ), (7)

where Pn(λ) is a polynomial of λ defined by the recursive
relation

Pn+1(λ) = λxnPn(λ) − an−1Pn−1(λ)

an

, (8)

with P0(λ) ≡ 1 and P1(λ) = x0/a0. Since f0 can be obtained
from the condition fN = f0PN (λ) = 1, getting the full solu-
tion is reduced to finding the correct value of the Lagrange
multiplier λ, which is one of the roots of the polynomial
equation

N∑
n=0

xnPn(λ)2 =
(

P − 1 +
N∑

n=0

xn

)
PN (λ)2. (9)

To be of physical relevance, the obtained λ needs to be real and
it has to lead to a filter with parameters, which are all positive
and bounded by one. Among the values of λ satisfying those
condition, the one corresponding to the global extreme, rather
than just a local one, needs to be selected by directly checking
the respective value of μ.

Interestingly enough, not all combinations of α, P , and N

lead to physical filters. In fact, for any specific pair of values
of α and P , there are only a handful of values of N providing
physically relevant filters. This is illustrated in Fig. 1, where
it can be seen that for log10 P = −1.3 both N = 2 and 3
provide a physical filter (N = 3 is optimal). There is no filter
for N = 1 because it is just impossible to reach such a low
probability by damping only a single coefficient. There are
also no physical filters for N � 4: All the obtained values of
λ are either complex or lead to filters that are not bounded
by one. This could be resolved by adding additional boundary
conditions for the set of equations, but it turns out that it
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FIG. 1. (Color online) Value of μ for the optimal probabilistic
measurement of the phase of the coherent state with α = 0.5
dependent on the probability of success. Differently colored areas
correspond to filters with different filter parameters N .

is not necessary, as in these cases the optimal filter can be
obtained for a different value of N . The particular optimal N

needs to be found numerically. Fortunately this is a simple
matter of checking a range of values of N and finding the one
that leads to positive results. For illustration, several values
of N optimal for some range of α and P are depicted in
Fig. 2. As another illustration, Fig. 3 shows improvement of
the probabilistic measurement for several coherent states with
different amplitudes. Finally, the optimal filters for a specific
coherent state and a range of success probabilities are depicted
in Fig. 4.

We have introduced the concept of optimal probabilistic
measurement of quantum phase and shown how such a
measurement can be constructed. The approach can be used for
any quantum state, but we have mainly focused on practically
relevant coherent states, for which we have managed to obtain
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FIG. 2. (Color online) Optimal filter parameters N dependent on
the coherent amplitude of the coherent state α and the probability of
the successful measurement P .
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FIG. 3. (Color online) Value of μ for the optimal probabilistic
measurement of the phase for various coherent states.

the form of the optimal measurement in a semianalytic form.
The probabilistic aspect of the measurement can be represented
by a filter transmitting various Fock space elements with
different amplitudes. The derived optimal measurement sets an
upper bound on the trade-off between the quality and the prob-
ability of success of phase measurements. The filter required
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FIG. 4. (Color online) Optimal filters for the coherent state with
α = 0.5 and a range of success probabilities.

for such a measurement is a highly nonlinear operation, but
in light of the recent advent of manipulating light on the
individual photon level [11], it might be within experimental
reach.
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We propose an alternative way of implementing several elementary quantum gates for qubits in the coherent-
state basis. The operations are probabilistic and employ single-photon subtractions as the driving force. Our
schemes for single-qubit PHASE gate and two-qubit controlled PHASE gate are capable of achieving arbitrarily
large phase shifts with currently available resources, which makes them suitable for the near-future tests of
quantum-information processing with superposed coherent states.
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Quantum computation offers several advantages over its
classical counterpart, namely an exponential speedup for some
computational tasks. Currently, the most advanced approach
to actually building the quantum computer relies on the use
of two-level quantum systems: qubits. Their quantum optical
implementation relied initially on states of single photons [1],
but recently there were proposals to use superpositions of two
“macroscopical” objects, two coherent states of light differing
by phase [2,3]. Since then there has been considerable attention
focused on obtaining such superposed coherent states [4] or
even arbitrary qubits in the coherent-state basis [5].

Any quantum computer needs to be constructed from basic
building blocks, from quantum gates. In principle, two types
of gates are required. Single-mode gates are needed to control
quantum states locally, while two-mode gates serve to provide
entanglement. The original proposal for quantum computing
with coherent states [3] suggested that these gates could be
implemented by coherent displacements and interference on
unbalanced beam splitters followed by projection back onto the
computational subspace. This approach looks fine in theory,
but with regards to currently available experimental resources,
there is hardly any interesting effect that can be observed.

This statement requires some clarification. The scheme put
forward in Ref. [3] relies on the phase shift that occurs when a
coherent state gets displaced, D̂(β)|α〉 = e(αβ∗−α∗β)/2|α + β〉.
If |β| � |α|, the displaced state strongly resembles the original
one, differing mainly in the phase shift of the basis coherent
state. The displacement could be driven classically, providing
the single-mode phase-shift operation, or by another quantum
state to implement a two-qubit gate. However, the need for
the low value of the displacement results in a low value of the
implemented phase shift, considering the currently achievable
size of superposed coherent states, |α| ≈ 1. Consequently, a
large number of operations (at least ten) would be required to
achieve a π phase shift. Furthermore, an indispensable part
of the operation is quantum teleportation, which projects the
displaced state back onto the computational basis |α〉, |−α〉
and which should be implemented after each step. Without it,
the actual nature of transformations is revealed to be that of
a trivial displacement or a beam splitter. Unfortunately, the
teleportation requires the entangled superposed coherent state
as a resource, which, together with the need for photon number
resolving detectors, renders it either unavailable or highly
probabilistic.

All in all, the operations of [3] allow, in principle, deter-
ministic interactions of arbitrary strength. In reality though,

the single step produces only a very weak effect, and the need
to teleport the states afterward means that presently the full
gate is probabilistic anyway and that there probably will not
be more steps in the foreseeable future. Therefore, if we wish
to test the principles of quantum-information processing with
the superposed coherent states, we need to devise alternative,
more feasible, approaches.

In the following, we are going to present an alternative
way of performing several of the elementary gates: the single-
mode PHASE gate, the two-mode controlled PHASE gate, and
the single-mode Hadamard gate. The gates are probabilistic,
relying on projective measurements (photon subtractions, in
particular) to deliver the nonlinear effect.

To clearly convey the basic ideas let us work in the idealized
scenario of perfect superposition of coherent states and perfect
photon subtraction. We start with the single-mode PHASE

gate which is necessary for single qubit manipulations. The
procedure is schematically shown in Fig. 1. An arbitrary qubit
in the coherent-state basis,

|ψin〉 = x|α〉 + y|−α〉, (1)

is first coherently displaced by γ , |ψin〉 → D̂(γ )|ψin〉. This
operation can be easily performed by mixing the signal beam
with an auxiliary strong coherent field on a highly unbalanced
beam splitter [6]. Subsequently, a single photon is subtracted
from the state, which is mathematically described by the action
of annihilation operator â. Finally, the state undergoes an
inverse displacement by −γ , and we have

|ψout〉 = D̂(−γ )âD̂(γ )|ψin〉
= x(α + γ )|α〉 + y(−α + γ )|−α〉. (2)

This operation becomes equivalent to a PHASE gate provided
that the complex displacement γ satisfies

γ − α

γ + α
= eiφ, (3)

which yields γ = iα/ tan(φ/2). The output state after PHASE

gate then reads

|ψout〉 = i(xe−iφ/2|α〉 + yeiφ/2|−α〉), (4)

and it can be seen that, up to a global phase factor, any nonzero
phase shift φ may be performed in this way.

Another important gate for quantum-information process-
ing is the two-qubit controlled PHASE gate, which is, up to local
operations, equivalent to the controlled-NOT (CNOT) gate, and
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FIG. 1. (Color online) Schematic representation of the single-
mode PHASE gate. BS stands for a mostly transmitting strongly
unbalanced beam splitter, APD stands for avalanche photodiode, and
D represents the displacement operation.

which is used to establish entanglement in cluster states. It can
be implemented in a manner similar to the single-qubit PHASE

gate, also employing displacements and photon subtractions
as the driving force. However, to achieve interaction between
the two modes 1 and 2 while preserving the computational
basis, the operations take place in one arm of a Mach-Zehnder
interferometer, see Fig. 2. For the input two-qubit state written
in the coherent-state basis

|�in〉 = c11|α,α〉 + c10|α,−α〉 + c01|−α,α〉 + c00|−α,−α〉,
(5)

the controlled PHASE gate is symmetric and preserves the
structure of the state, only providing the term |−α〉|−α〉 with
a phase factor eiφ , where φ is the phase shift introduced by the
gate. A normalized output state of the gate corresponding to
input state (5) thus reads

|�out〉 = c11|α,α〉 + c10|α,−α〉 + c01|−α,α〉
+ eiφc00|−α,−α〉, (6)

which is a new state with coefficients c′
mn related to cmn as

c′
11

c11
= c′

01

c01
= c′

10

c10
= c′

00

c00
e−iφ. (7)

The implementation of the gate requires a Mach-Zehnder in-
terferometer with two single-photon subtractions accompanied
by suitable displacements placed in one of the arms, which can
be formally expressed as

|�out〉 = Û
†
BSbD̂

†
2âD̂2D̂

†
1âD̂1ÛBSb|�in〉

= (â + b̂ + γ2)(â + b̂ + γ1)|�in〉. (8)

Here, â and b̂ represent the annihilation operators of modes 1
and 2, respectively, D̂1,2 stand for the displacement operators
acting as D̂

†
1,2âD̂1,2 = â + γ1,2/

√
2, and ÛBSb is the unitary

evolution operator of a balanced beam splitter, Û
†
BSbâÛBSb =

(â + b̂)/
√

2.

FIG. 2. (Color online) Schematic representation of the two-mode
controlled PHASE gate. BSb stands for a balanced beam splitter
and D1,2 represent displacements by γ1,2/

√
2. Numbers 1 and 2

distinguish the two participating modes, while labels “in” and “out”
describe the input and output states of the gate.

After the transformation, the composition of the state
remains the same, only the coefficients are transformed to

c′
11 = c11[4α2 + 2α(γ1 + γ2) + γ1γ2],

c′
10 = c10γ1γ2,

(9)
c′

01 = c01γ1γ2,

c′
00 = c00[4α2 − 2α(γ1 + γ2) + γ1γ2].

To achieve the controlled PHASE gate transformation given
by (7) one needs to attune the displacements γ1 and γ2 in such
a way that

γ1 + γ2 = −2α,
(10)

γ1γ2 = 8α2

eiφ − 1
.

An explicit calculation provides closed analytical formulas for
the required displacements

γ1,2 = −α

[
1 ±

√
eiφ − 9

eiφ − 1

]
. (11)

Again, the phase shift φ can attain an arbitrary nonzero value.
It is important to stress, and it holds for both the PHASE

gates, that although we have used direct displacements of the
participating modes, it is actually more feasible to apply all the
required displacement operations only on the ancillary modes
used for the photon subtraction, just before the avalanche
photodiode (APD) measurement. To explain the procedure
we consider an arbitrary two-mode coherent state |α′,β ′〉
and subject it to the evolution sketched in Fig. 3. First, the
two modes are separately split on strongly unbalanced beam
splitters with transmission coefficients t ≈ 1 and reflection
coefficients r � 1, which leads to a joint state |α′,β ′〉|rα′,rβ ′〉.
The two ancillary modes are now mixed on a balanced beam
splitter and one of the modes is traced out. Since r is very
small, this does not significantly reduce the purity and we can
keep working with the state vector. The remaining mode is then
split on another balanced beam splitter and two displacement
operations are performed, arriving at the premeasurement state

|α′,β ′〉
∣∣∣∣ r2(α′ + β ′) + γ ′

1,
r

2
(α′ + β ′) + γ ′

2

〉
. (12)

FIG. 3. (Color online) Alternative architecture of the two-mode
controlled PHASE gate. BSb stands for a balanced beam splitter, while
BSu represents a strongly unbalanced weakly reflective one. APD
represents avalanche photodiode and D1 and D2 are the displacement
operations. Numbers 1 and 2 distinguish the two participating modes,
while labels “in” and “out” describe the input and output states of the
gate.
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In the limit of small r , the APD detectors can be represented
by projection onto the single-photon Fock state 〈1| and if
the displacements are chosen so γ ′

1,2 = γ1,2r/2 the final state
looks as

(α′ + β ′ + γ1)(α′ + β ′ + γ2)|α′,β ′〉, (13)

which is exactly what we want.
Note that a similar approach was already used for generation

of an arbitrary coherent-state qubit [5], which also demon-
strated, albeit in a limited way, the core principle behind the
single-mode PHASE gate.

Finally, to complete the set of gates necessary for imple-
mentation of an arbitrary single-qubit operation, we present a
feasible implementation of the Hadamard gate. Unlike the two
previous gates, the Hadamard gate requires more than single-
photon subtractions. This is quite understandable because the
gate is supposed to transform a coherent state |α〉 into a
superposed state |α〉 + |−α〉, which is a strongly nonlinear
process. Therefore an additional superposed coherent state, let
us say |α〉 + |−α〉, is required.

The core principle is simple and it employs the previously
described controlled PHASE gate. This gate, with φ = π ,
transforms the initial and the ancillary state to

x|α〉(|α〉 + |−α〉) + y|−α〉(|α〉 − |−α〉). (14)

The gate is finalized by using a projective measurement 〈π |
such that 〈π |α〉 = 〈π |−α〉. An example of such a measurement
is the homodyne detection of the p̂ quadrature, postselecting
the state only if a specific value is detected, or a photon number
resolving detector projecting on an arbitrary even-number
Fock state.

This kind of Hadamard gate requires three projective
operations. Two photon subtractions for implementation of the
controlled gate and one additional measurement to confine the
state into a single mode. There is another possibility, illustrated
in Fig. 4, which reduces the number of operations to two. This
improvement is compensated by imperfection of the operation,
as it works only approximatively, even though the quality may
be made arbitrarily large.

Here too we need another superposed coherent state |α〉 +
|−α〉. If we consider a displacement by some amplitude β, a
single-photon subtraction, and the inverse displacement, the
state would be transformed to

(α + β)|α〉 + (−α + β)|−α〉. (15)

FIG. 4. (Color online) Schematic representation of the approxi-
mate single-mode Hadamard gate. BSu stands for a highly unbalanced
weakly reflecting beam splitter, while BS� is a beam splitter with
transmission coefficient t� used to set the parameter �. APD stands
for a avalanche photodiode and 〈π | represents the suitable projective
measurement (see text).

We can now see that for β = 0 we have obtained an odd
cat state, while for β 	 α the cat state remained even. If
we could correlate the displacement with the basis states of
the initial state x|α〉 + y|−α〉, we would have obtained the
required transformation. So how to do it?

Let us start with the initial state (1) and displace it by α.
The complete state of the initial mode and the resource mode
then looks as

(x|β〉 + y|0〉) ⊗ (|α〉 + |−α〉), (16)

where β = 2α, but its value could be different if the initial state
had a different amplitude than the ancillary resource. The next
step is to apply a joint single-photon subtraction, similarly as
for the controlled PHASE gate, represented by operator �â +
b̂ (where â and b̂ are annihilation operators acting on the
ancillary and the input mode, respectively) and a projection
of the initial mode onto a certain pure state 〈π | that will be
specified in the following. The resulting single-mode output
state then reads

x〈π |β〉[(β + �α)|α〉 + (β − �α)|−α〉]
+ y〈π |0〉�α(|α〉 − |−α〉). (17)

If |�α| � |β| holds, we can make the approximation β ±
�α ≈ β and the output state simplifies to

x〈π |β〉β(|α〉 + |−α〉) + y〈π |0〉�α(|α〉 − |−α〉). (18)

The desired Hadamard operation is then performed if

〈π |β〉β = 〈π |0〉�α. (19)

To achieve this, the projective measurement |π〉 needs to be
properly chosen. For example, using homodyne detection to
project on an x̂ eigenstate 〈x̂ = q| is appropriate, provided that
exp[−(q − √

2β)2/2] = exp(−q2)α�/β. This can always be
done. The value of � itself can be set by manipulating the beam
splitter of the joint photon subtraction as � = t�/

√
1 − t2

� . In
this way, even if there is a large difference in amplitudes
of the two participating states, the Hadamard gate can be
implemented with arbitrary precision. Note that the standard
way of generating an odd superposed coherent state by a
photon subtraction is actually very close to the implementation
of the proposed Hadamard gate for a known coherent-state
input.

The experimental implementation of the proposed gates
should be straightforward. The most difficult part of the
gates is the photon subtraction, which can be implemented
by a strongly unbalanced beam splitter and an on-off photo-
detector—the avalanche photodiode. In this form the photon
subtraction is becoming a staple of continuous variables
quantum optical experiments and it is widely used to gen-
erate superposed coherent states [4,5], or to manipulate and
concentrate entanglement [7,8].
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To summarize, we have proposed a feasible implemen-
tation of several elementary gates for superposed coherent-
state qubits. The main benefit of the proposed approach,
which is based on using single-photon subtractions, is
that it allows achieving strong nonlinearities even with the
currently available small cat-like states exhibiting |α| ≈ 1,
much unlike the proposal of Ref. [3]. The experimen-
tal feasibility, together with the ability to produce strong
nonlinearities, makes these gates suitable for immediate

tests of quantum-information processing with coherent-state
qubits.
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Experimental demonstration of a Hadamard gate for coherent state qubits
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We discuss and make an experimental test of a probabilistic Hadamard gate for coherent state qubits. The
scheme is based on linear optical components, nonclassical resources, and the joint projective action of a
photon counter and a homodyne detector. We experimentally characterize the gate for the coherent states of the
computational basis by full tomographic reconstruction of the transformed output states. Based on the parameters
of the experiment, we simulate the fidelity for all coherent state qubits on the Bloch sphere.

DOI: 10.1103/PhysRevA.84.050301 PACS number(s): 03.67.Lx, 42.50.Ex

Measurement-based, linear optical quantum processors
rely on offline prepared resources, linear optical transforma-
tions, and measurement-induced operations [1]. Among all
measurement-based protocols, the most famous ones are the
cluster state quantum processor where universal operations
are executed by measuring a large entangled cluster state
[2], and the linear quantum computer approach proposed by
Knill, Laflamme, and Milburn [3]. The latter method is based
on single-photon resources that interfere in a linear optical
network and subsequently are measured to enforce the desired
operation. Despite its seeming simplicity, the implementation
of a fault tolerant operating algorithm is complex as it requires
a very large overhead.

An alternative approach to measurement-based linear
quantum computing has been put forward by Ralph et al.
[4]. Rather than using discrete degrees of freedom (e.g.,
the polarization) of a single photon as the computational
basis, it was suggested to use two mesoscopic coherent
states |α〉 and |−α〉, where α is the amplitude. Although
these states are only approximately orthogonal (〈α|− α〉 �= 0),
resource-efficient and fault-tolerant quantum gates can be
implemented: For a large coherent amplitude, that is, α > 2,
deterministic gates can in principle be realized, although the
experimental implementation is very challenging [5]. On the
other hand, by employing a simpler physical implementation,
nondeterministic gates can be realized for any value of α, and
for α > 1.2, the scheme was theoretically shown to be fault
tolerant and resource efficient [6].

An even simpler implementation of a universal set of
nondeterministic quantum gates was recently suggested by
Marek and Fiurášek [7]. They proposed the physical realization
of a single-mode and a two-mode phase gate as well as the
Hadamard gate. In this Rapid Communication we present a
proof of principle experiment of the probabilistic Hadamard
gate for coherent state qubits. The implemented protocol is
based on a squeezed state resource, linear operations as well
as two projective measurements of discrete and continuous
variable types. By injecting the computational basis states
(|α〉 and |− α〉) into the gate we partially characterize

*Corresponding author: anders.tipsmark@fysik.dtu.dk

its function by reconstructing the Wigner functions of the
transformed output states and calculate the fidelity with an
ideally transformed state. Based on these results we perform a
simulation of the gate performance for arbitrary coherent state
qubits.

A Hadamard gate transforms the computational basis states
|± α〉 into the diagonal basis states (|α〉 ± |−α〉)/√N±,
which we refer to as the even and odd coherent state qubits
(CSQs) [8–15]. Such a transformation can be performed
probabilistically using the circuit shown in Fig. 1(a). The gate
is based on a supply of coherent state superposition resources
which are assumed to have the same amplitude as the coherent
states of the computational basis. The gate works by displacing
the arbitrary CSQ input state |ψin〉 = (u|α〉 + v|−α〉)/√N ,
followed by a nondistinguishable subtraction of a single
photon, from either the displaced input or the resource state.
Physically, this can be done by reflecting a small part of either
state using highly asymmetric beam splitters (ABS1,ABS2),
interfering the resulting beams on a beam splitter (BS) with
transmittivity t and reflectivity r , and detecting one photon
at the output with a single-photon detector. Theoretically
this is described by the operator râ + t b̂, where â and b̂

are annihilation operators corresponding to the subtraction
of a photon from the displaced input and the coherent
state superposition resource, respectively. As a final step the
two-mode state is projected onto the single-mode quadrature
eigenstate |x〉, where x is the amplitude quadrature, by using
a homodyne detector (HD). The resulting output state is

u
|α〉 + |− α〉√

N+
+ Y1(u + vZ)

|α〉 − |− α〉√
N−

, (1)

where

Y1 = t

2r

√
N−
N+

, Z = 〈x|0〉
〈x|2α〉 . (2)

By using a beam splitter (BS) with t � r and setting the
x quadrature such that Z � 1 and ZY1 = 1, the Hadamard
transform is implemented. The gate is probabilistic, and
implemented by a hybrid detection system, using both discrete
and continuous variable projections [16,17]. Its success is
conditioned on the joint measurement of a photon and a
quadrature measurement outcome with the value x.

050301-11050-2947/2011/84(5)/050301(4) ©2011 American Physical Society
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FIG. 1. (Color online) (a) Schematic of the Hadamard gate. The
input coherent state qubit (CSQ) is displaced (D̂) and mixed with
a resource state at a beam splitter (BS). The output of the gate
is conditioned by a single-photon detection (〈1|) and a homodyne
measurement (〈x|). (b) Gate fidelity as a function of the CSQ
amplitude for an ideal coherent state superposition resource (solid
green/light gray) and the squeezed state resource (dashed red/gray).
The degree of squeezing that optimizes the fidelity is represented by
the dotted blue/dark gray curve.

As an even coherent state superposition with small am-
plitude is reminiscent of a squeezed vacuum state, and this
latter state is experimentally easier to prepare, we will in the
following consider the replacement of the ideal resource with a
squeezed vacuum state. With this substitution, the transformed
state will have the following form:

uŜ(s)|0〉 + Y2(u + vZ)Ŝ(s)â†|0〉, (3)

where s is the squeezing parameter which is related to the
squeezing variance by V = e−2s , and the parameter Y2 is now
given by

Y2 = −t sinh(s)/(2rα). (4)

Again, the requirement for optimal implementation of the
Hadamard transform is Z � 1 and ZY2 = 1. Using this result
we calculate the expected gate fidelity for various amplitudes
α as shown by the dashed red/gray curve in Fig. 1(b). For
the squeezed vacuum resource, we optimize the squeezing
degree (shown by the dotted blue/dark gray curve) to obtain
the highest fidelity which reaches unity for α = 0. At higher
amplitudes, the resource deviates from the ideal coherent state
superposition and thus the fidelity decreases. For comparison,
we also plot the expected gate fidelity for the case of an ideal
resource (the solid green/light gray line). In the experiment
described below we use α = 0.8, which gives a reasonable
trade-off between fidelity (F = 0.97), required squeezing
(V = 2.6 dB), and success probability.

The experimental setup is presented in Fig. 2. Nearly
Fourier-limited picosecond pulses (4.6 ps) generated by a
cavity-dumped Ti:sapphire laser with a repetition rate of
815 kHz and a central wavelength of 830 nm are frequency
doubled [second-harmonic generation (SHG)] by single pass-
ing a 3-mm-long periodically poled KTiOPO4 nonlinear
crystal (PPKTP1). Up-converted pulses at 415 nm pumps
a second crystal (PPKTP2) which is phase matched for
degenerate collinear optical parametric amplification (OPA),
thus yielding up to 3 dB of vacuum squeezing, in the vertical
polarization. This state is used as a resource for the Hadamard
gate. An adjustable fraction of a horizontally polarized mode
at 830 nm passes the OPA crystal unchanged and serves as
the input coherent state to the gate. Approximately 7.5% and

FIG. 2. (Color online) Experimental setup for the coherent state
qubit Hadamard gate.

1.5% of the coaxially propagating resource and input modes,
respectively, are reflected off an asymmetric beam splitter
(ABS) and transmitted through a half-wave plate (HWP) and
a polarizing beam splitter (PBS1), which in combination acts
as a variable beam splitter (BS), thus mixing the input mode
and the resource mode. The transmittance |t |2 of the BS is
set to 25%. The output is spatially and spectrally filtered by
a single-mode optical fiber (SMF) and a narrow interference
filter (IF) with a bandwidth of 0.05 nm and detected by a
single-photon counting module based on a silicon avalanche
photodiode (APD) with a dark count rate of 20 ± 4 per second.
The total efficiency of the APD arm reaches 25 ± 4%.

The transmitted fraction of the modes after the asymmetric
beam splitter is superimposed with a bright local oscillator
(LO) at a polarizing beam splitter (PBS2). The amplitude
quadrature is measured on the reflected mode by homodyne
detection with a fixed relative phase set to zero. The recording
of the measurement results was done by correlating the
APD detection events with a synchronization signal from
the laser cavity dumper through a coincidence circuit to
decrease the probability of dark events. Every time a photon
was detected by the APD within the accepted time slot, the
homodyne signal was sampled by an oscilloscope running in a
memory segmentation regime and fed to a computer where the
corresponding quadrature value was processed. The state at the
output of the gate is measured with another homodyne detector
with the relative phase of the LO scanned over a period and
then reconstructed using maximum-likelihood-based quantum
state tomography [18]. In the reconstruction we corrected
for the total detection efficiency of the homodyne detector,
which was estimated to be 77 ± 2%, including efficiency
of the photodiodes (93 ± 1%), visibility (95 ± 1%), and
transmission efficiency (93 ± 1%).

Making a full experimental investigation of the gate
performance would require access to states in the diagonal
basis. In our experiment we did not have access to these
diagonal states, which prevents us from performing a full
characterization of the gate performance. The gate was solely
tested for the computational basis states |± α〉, which after the
displacement operation D̂(α) corresponds to the injection of
|0〉 and |2α〉, where α = 0.8 ± 0.2 in our case. The uncertainty
is due to the imperfect calibration of total losses of the whole
setup. As described, the gate is heralded by conditioning on two
different measurement outcomes—the APD detection event
and a certain outcome of the first homodyne detector. It can
be seen that the conditional homodyning only plays a role
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when we inject a CSQ into the gate, i.e., when u,v �= 0.
With coherent states as the input, the solution is to choose
a narrow heralding window that would balance the success
probabilities of the gate for those basis states. For the input
state |−α〉 the APD detection probability was of the order of
10−3 while for the |α〉 input state, the probability was of the
order of 10−2. From this we can see that we need to choose a
heralding window that will balance out the factor of 10. Based
on the experimental data we found its optimal position x = 0.4
and the width of 0.02 that would give us an overall success
probability of the order of 10−5.

The reconstructed output states for both input states |−α〉
and |α〉 can be seen in Fig. 3. For the |−α〉 input, the gate
yields a state which closely resembles a small odd cat state,
which is what we expect from the gate operation. We found
the fidelity between the prepared state and the ideal CSQ,
(|α〉 − |−α〉)/√N−, is maximized for α = 0.75 and reaches
a value of F−α = 0.65 ± 0.04. The nonclassicality of the
superposition state produced by the Hadamard gate can be
seen from the negativity of the corresponding Wigner function,
which is W (0,0) = −0.11 ± 0.02, which is comparable to
previous experiments where photon subtraction has been used
to prepare non-Gaussian states [9–15]. The nonclassical effects
were also observable without correction, with a fidelity of
F−α = 0.55 ± 0.04 and a value at the origin of W (0,0) =
−0.05 ± 0.02. For the |α〉 input, the output state closely
resembles a squeezed state, approximating a small even CSQ,
(|α〉 + |−α〉)/√N+. The fidelity between the prepared state
and the ideal CSQ for α = 0.75 was found to be Fα =
0.94 ± 0.02.

FIG. 3. (Color online) Reconstructed density matrices (insets)
and calculated Wigner functions of the output states for (a) |−α〉
input and (b) |α〉 input.

The experimental results shown in Fig. 3 only provide a
partial test of the Hadamard gate. In order to gain insight into
its action on an arbitrary CSQ input, we conducted a numerical
simulation of the gate, taking into account all important
experimental imperfections, including realistic splitting ratios
of ABS1, ABS2, and BS, losses in APD and HD channels, and
the impurity of our resource squeezed state.

Our simulation starts with an arbitrary qubit in the coherent
state basis |ψin〉 for which the global input state reads

ρ̂in = |ψin〉1〈ψin| ⊗ |0〉2〈0| ⊗ |0〉3〈0| ⊗ ρ̂A
4 , (5)

where the subscripts are used to label the four participating
modes and ρ̂A represents the density matrix of a squeezed
thermal state used as the ancillary resource. The action of the
gate can now be represented by a unitary evolution of the linear
optical elements Û , followed by positive operator-valued
measure (POVM) elements of successful heralding events �̂,
with the output state given by

ρout = 1

PS
Tr123(Û ρ̂inÛ

†�̂), (6)

where PS = Tr(ÛρinÛ
†�̂) is the success rate. Û =

Û23(tBS)Û12(tABS1)Û34(tABS2) is composed of unitary beam-
splitter operations coupling the respective modes, and �̂ =
�̂HD

1 ⊗ �̂APD
3 describes the inefficient homodyne and APD

measurements. To parametrize a Bloch sphere of input CSQ
states, we denote u = cos θ and v = sin θ exp(iφ), where θ ∈
[0,π/2] and φ ∈ [0,2π ]. The north and south poles correspond
to the pseudo-orthogonal states |α〉 and |−α〉, respectively.

FIG. 4. (Color online) The overall quality of the gate is visualized
by mapping the Bloch sphere of input CSQ onto the fidelity F of the
output states (a) and their corresponding success probabilities PS (b).
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A mapping of this Bloch sphere onto the corresponding
fidelities and success probabilities at the output is shown
in Fig. 4. The fidelity spans the interval of F ∈ [0.67,0.96]
with an average value of F̄ = 0.78. Particularly, for coherent
states |α〉 and |−α〉 at the input, the fidelities of 0.88 and
0.67 are predicted, respectively, which agrees well with the
actually measured values. The success probabilities associated
with |α〉 and |−α〉 are almost equal, which confirms the
correct value of the amplitude quadrature used at the HD
for conditioning. The average success probability is P̄S =
7.2 × 10−6.

Alternatively, we quantify the performance of the gate by
employing the process fidelity. This quantity is based on
the elegant notion that any operation can be implemented
through teleportation: The desired operation is conducted
onto an entangled state which is subsequently used to tele-
port the state on which the operation should be imparted
[19]. The quality of such an operation is given by the
quality of the actually transformed entangled state, which
can be quantified by the fidelity with respect to the ideally
transformed entangled state. We have performed a numeri-
cal simulation of the transformation of the entangled state
|α,α〉 + |−α, −α〉 and compared it to the ideally transformed
state |α〉(|α〉 + |−α〉)/√N+ + |−α〉(|α〉 − |−α〉)/√N−. The
process fidelity resulting from this simulation reaches
F = 0.70.

In conclusion, we have demonstrated a single-mode
Hadamard gate for coherent state qubits on the computational
basis, by using a hybrid projector consisting of a conditional
homodyne detector and a photon counter. Its performance
has been characterized by a set of basis states and from
this we derived a model which could be used to simulate
its performance for an arbitrary qubit. This implementation
constitutes an important step toward the demonstration of
quantum computing with macroscopic qubit states. To imple-
ment universal quantum computing, the Hadamard gate must
be supplemented with a single-mode phase gate (a special
case—the sign-flip gate—was recently implemented [20])
and a two-mode controlled phase gate. In addition to the
implementation of these gates, another outlook is to refine
the experimental techniques or propose alternate schemes that
may increase the gate fidelity, and thus eventually may allow
for fault-tolerant operation.
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We investigate which non-Gaussian resources are needed, in addition to Gaussian operations and measure-
ments, for implementation of arbitrary quantum gates on multimode quantum states of light. We show that an
arbitrary set of pure non-Gaussian states with finite expansion in Fock basis is sufficient for this task. As an
illustration we present an explicit scheme for probabilistic implementation of the nonlinear sign gate using
resource non-Gaussian states and Gaussian operations.
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I. INTRODUCTION

The ability to perform an arbitrary operation on a quan-
tum system is a crucial prerequisite for advanced quantum
information processing and quantum computing �1�. In opti-
cal implementations, quantum states of light are manipulated
mainly with passive and active linear optical elements such
as beam splitters and squeezers. The resulting state transfor-
mations preserve the Gaussian form of the Wigner function
and are thus referred to as Gaussian operations. It is readily
apparent that such operations alone are not sufficient for uni-
versal continuous-variable �CV� quantum computation �2–4�
and must be supplemented by access to some other resources
such as nonlinear dynamics �2�, single-photon detectors
�5,6�, or non-Gaussian states �7,8�. While several schemes
for generation of highly nonclassical states of light and
implementation of various non-Gaussian operations have
been suggested �9–11�, a systematic study of usefulness of
non-Gaussian states for universal quantum state manipula-
tion and engineering has been missing.

In the present paper we focus on implementation of quan-
tum gates using off-line generated ancilla states and Gauss-
ian measurements and operations �8,12,13�. The ancilla
states represent the only non-Gaussian ingredient and can
thus be seen as a resource that is converted into a non-
Gaussian CV quantum gate. It is our aim to investigate what
non-Gaussian ancilla states are sufficient for realization of
arbitrary CV quantum gate within this approach. We shall
prove that arbitrary pure single-mode non-Gaussian state ���
possessing finite expansion in Fock-state basis is sufficient
for �probabilistic� implementation of any n-mode quantum
gate on Hilbert-space HN

�n, where HN is spanned by the first
N+1 Fock states and both N and n are finite but otherwise
arbitrary. The formulation in terms of truncated finite-
dimensional Hilbert spaces is necessary in order to ensure
that a scheme with finite number of components can be con-
structed that �conditionally� implements the requested gate.

The core of our argument is the reduction of the problem
to generation of single-photon Fock states �1� from the re-
source state ���. We provide explicit scheme for this latter
task and assess its performance. For the sake of presentation
clarity we explain the protocol on the example of traveling
light modes, but the scheme is applicable also to other physi-
cal platforms such as atomic ensembles or optomechanical
systems.

II. SUFFICIENCY OF SINGLE-PHOTON STATES

We start by demonstrating that only single-photon states,
apart from Gaussian operations and measurements, are re-
quired for probabilistic implementation of arbitrary quantum
operation on HN

�n. A crucial observation is that the projection
on a single-photon state can be performed with the help of an
ancillary single-photon state, a balanced beam splitter, and a
pair of homodyne detectors measuring amplitude quadrature
x1 and phase quadrature p2, respectively, cf. Fig. 1�a�. Suc-
cessful projection is heralded by outcomes x1=0 and p2=0.
In this case, the two input modes impinging on the balanced
beam splitter are projected on the maximally entangled
Einstein-Podolsky-Rosen �EPR� state ��EPR�=�n=0

� �n ,n�.
This in conjunction with the ancillary single-photon state
implements the probabilistic projection on a single-photon
state, 12��EPR �1�1= 2�1�. To achieve a nonzero success prob-
ability, a finite acceptance window for the measurement out-
comes x1 and p2 has to be introduced, which reduces the
fidelity of the projection and leads to a trade-off between
operation quality and its success probability. This is an un-
avoidable feature of our protocol arising from involvement
of only Gaussian measurements.

Single-photon states and single-photon measurements
combined with Gaussian operations are sufficient for proba-
bilistic preparation of arbitrary multimode quantum state

FIG. 1. �Color online� �a� Setup for projective measurement on
a single-photon state. D—Homodyne detectors, BS—balanced
beam splitter. �b� Setup for approximate photon subtraction.
D—homodyne detector, BS—balanced beam splitter, ta,b—beam
splitter with transmittance ta,b, D���—displacement driven by de-
tected value �.
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�10� and implementation of arbitrary transformation on HN
�n,

e.g., by exploiting the scheme described in Ref. �9� or simply
by quantum teleportation �14�. The whole question about the
nature of non-Gaussian resources sufficient for universal
quantum state manipulation is thereby reduced to finding a
class of states from which a single-photon state can be gen-
erated with the help of only Gaussian operations and mea-
surements. We are going to show that any collection of non-
Gaussian pure states possessing finite expansion in the Fock-
state basis is sufficient for this.

III. GENERALIZED PHOTON SUBTRACTION

Let us consider a steady supply of states of the form

��N� = �
k=0

N

ck�k� . �1�

An essential ingredient of our protocol is the setup depicted
in Fig. 1�b� which employs one auxiliary state ��N� and
Gaussian operations to remove the highest Fock-state �M�
from the input state ��M�=�m=0

M bm�m�. This produces a state
��M−1�=�m=0

M−1bm� �m� and this operation can be thus seen as a
version of approximative photon subtraction.

First part of the process lies in a deterministic transforma-
tion of ��N� into a state

��0̄� = �
k=1

�

dk�k�, �
k=1

�

�dk�2 = 1, �2�

with d1�0 and missing vacuum term, d0=0. This can be
achieved by coherent displacement of the state ��N� if the
displacement amplitude � satisfies

�0�D�����N� = e−���2/2�
k=0

N

ck

�− ���k

	k!
= 0. �3�

Such � exists for all finite N. However, for a particular set of
scenarios, e.g., when ��N�= �N�, this approach does not work
as the required displacement is �=0 corresponding to no
action at all and the scheme in Fig. 1�b� would produce
vacuum state from input ��N�. This problem can be fortu-
nately circumvented using an ancillary vacuum mode, a
beam splitter, a single homodyne detection, and feed-forward
�see Fig. 1�b��. After passing through the beam splitter with
transmittance tb, the homodyne detection of the amplitude
quadrature x̂3 yielding a value x, and the displacement �, the
state �N� transforms into

��� = D����
k=0

N 	
N

k
�tb

krb
N−k�x�N − k��k� , �4�

where rj =	1− tj
2 for any j. By employing the relation for an

overlap of a quadrature eigenstate and a Fock-state

�x�n� =
Hn�x�

�1/4	n ! 2n
e−x2/2, �5�

where Hn�x� stands for the Hermite polynomial, we can see
that to arrive at form �2� with d0=0 and d1�0 for an arbi-

trary measured value x, the real displacement � must satisfy

HN�x̃� = 0, Nta
	2HN−1�x̃� � �raHN�x̃� , �6�

where x̃=x−�ta / �	2ra�. The first condition can be for all
values of x fulfilled by a suitable choice of �, while the
second condition is in these cases satisfied automatically, as
Hermite polynomials of unequal orders have different roots.
To summarize, the universal setup for deterministic genera-
tion of state �2� from a completely arbitrary state ��N� con-
sists of a beam splitter, homodyne detection, and a suitable
displacement operation, where the specific values of param-
eters have to be adjusted according to the state employed.
Also note that the displacement operation could be replaced
by a suitable postselection—allowing only states for which
no displacement is necessary and discarding the rest. Thus,
experimental feasibility can be gained at the cost of a
reduced success rate.

To perform the approximate photon subtraction on the
input state ��M�, this state in mode 1 is combined with
vacuum in mode 2 on a beam splitter with transmittance ta
yielding a two-mode entangled state at the output. A bal-
anced beam splitter and a pair of homodyne detectors are
then used to project the mode 2 and the mode 4 prepared in
auxiliary state ��0̄� onto the EPR state ��EPR�, cf. Fig. 1�b�.
This conditionally prepares the remaining output mode 1 in
the state ��M−1�=�m=0

M−1bm� �m�, where

bm� = �
k=m+1

M

dk−mbk	
 k

m
�ta

mra
k−m. �7�

IV. PREPARATION OF SINGLE-PHOTON STATE

The complete scheme for preparation of single-photon
state from N copies of state ��N� is shown in Fig. 2. By
repeated application of the approximate photon subtraction
we can transform any state ��N� to state

��1� = a0�0� + a1�1� , �8�

with �a1�	0. The parameters a0 and a1 can be made real by
a suitable phase shift. This state is then combined with
vacuum on a beam splitter with transmittance t, after which a
homodyne detection of the amplitude quadrature x of one
output mode is performed, projecting the state onto

��out� 
 �a0 + 	2xra1��0� + ta1�1� . �9�

If we postselect the events when the measurement outcome
is x=−a0 / �	2ra1�, we remove the vacuum term by destruc-
tive quantum interference and obtain the desired single-
photon state.

FIG. 2. �Color online� Complete setup for generation of a
single-photon state.
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As a demonstration, let us now explicitly show the proce-
dure to create a single-photon state from a pair of two-
photon states �2�. The full scheme is presented in Fig. 3. It
can be easily shown that to generate the single-photon state
the feed-forward displacement � should read

� =
ra

ta
�x3

	2 − 1� , �10�

where x3 represents a value obtained by the homodyne mea-
surement of the amplitude quadrature x3 of mode 3. The
other three homodyne detectors measure amplitude quadra-
tures x2 and x5 of modes 2 and 5, respectively, and phase
quadrature p4 of mode 4. Successful preparation of state �1�
is heralded by the measurement outcomes

x2 = 0, p4 = 0, x5 = − rb

ta
2 + 2�x3

	2 − 1�ra
2

taratbrc2	2
. �11�

In real experimental practice we cannot condition on the
projection on a single quadrature eigenstate �x=��, as this
corresponds to an event with zero probability of success.
Instead, we have to accept all events when the measured
value falls within a narrow interval centered at �, thus real-
izing a positive-operator-valued measure �POVM� element

�k,x=� = �
−X

X

�x = � + q�k�x = � + q�dq , �12�

where the parameter X determines the half width of the post-
selection interval and k labels the mode that is measured.
This of course effects the output state. The global input state
encompassing five modes, as can be seen in Fig. 3, can be
expressed as

��in� = �2�1�0�2�0�3�2�4�0�5. �13�

After interactions on all beam splitters and the feed-forward
loop the output state for a single particular measured value x3
reads

��out�x3�� = Uc,15UBS,24Ub,12D4����x3�3Ua,34��in� . �14�

Here, Uj,kl represents a unitary transformation of a beam
splitter j=a ,b ,c, BS coupling a pair of modes k and l. D4���
represents the displacement performed on mode 4 and � is
given by Eq. �10�. The final state is given by

�1�x3� =
Tr2345��2,x=0�4,p=0�5,x=x5

��out���out��

PS�x3�
,

where x5 is given by Eq. �11� and we have avoided to ex-
plicitly mark the dependence of ��out� on the value x3 for the
sake of brevity. Tr2345 stands for the partial trace over all
modes other than mode 1 and PS�x3� denotes the probability
of success

PS�x3� = Tr��2,x=0�4,p=0�5,x=x5
��out���out�� . �15�

This, however, still corresponds only to the scenario when a
particular value x3 was detected. To obtain the final result,
we need to average state �15� over all possible experimental
outcomes, arriving at

�1 =
1

PS
�

−�

�

PS�x3��1�x3�dx3, �16�

with a probability of success PS=−�
� PS�x3�dx3.

Figure 4 shows the performance of the procedure with
respect to homodyne detection with nonzero threshold X. As
the measure of quality we employ the fidelity, F= �1��1�1�,
which in this case reliably quantifies the content of the
single-photon state in the overall mixture. The transmittances
of the beam splitters were optimized as to maximize the
probability of success PS in the limit of very narrow accep-
tance windows �X→0�: ta=0.62, tb=0.79, and tc=0.90. The
trade-off between fidelity and the success probability is
clearly visible in Fig. 4.

V. EXAMPLE: NONLINEAR SIGN GATE

Finally we are going to present a full implementation of a
non-Gaussian operation using only Gaussian operations and
measurements and ancillary states ��N�. The resource states
are again going to be the two-photon states �2� from which
the single-photon states are extracted by means of procedure
depicted in Fig. 3. The non-Gaussian operation under con-
sideration is the nonlinear sign gate �5� which transforms a
generic state ��in�=c0�0�+c1�1�+c2�2� into ��out�=c0�0�
+c1�1�−c2�2�. This represents a unitary evolution induced by

FIG. 3. �Color online� Complete setup for generation of a
single-photon state from a pair of two-photon states. ta, tb, and tc

denote transmittances of the respective beam splitters, while BS
stands for a balanced beam splitter. Numbers 1–5 are used to label
the modes involved.
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FIG. 4. �Color online� Fidelity �left, blue solid line� and prob-
ability of success �right, green dashed line� of the preparation of the
single-photon state from a pair of two-photon states with respect to
the postselection threshold X.
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a Kerr-type Hamiltonian Ĥ= �
2 n̂�n̂−1� on a three-

dimensional Hilbert space spanned by �0� , �1� , �2�.
A celebrated result in linear-optics quantum computing is

that this gate can be implemented with help of only beam
splitters, one ancillary single-photon state, and two measure-
ments, one projecting on a single-photon state, the other on
the vacuum state �15� �see Fig. 5�. The single-photon state
projection can be performed with help of a scheme in Fig.
1�a� while the projection on the vacuum state is a Gaussian
operation. The transmittances of the beam splitter must sat-
isfy ta

2= �3−	2� /7�0.23 and tb= ta / �1−2ta
2��0.87 �15�.

The performance of the gate can be evaluated by using the
quantum process fidelity. Consider a maximally entangled
state on the Hilbert-space HN=2

�2 , �012�= ��00�+ �11�
+ �22�� /	3. Applying the nonlinear sign gate on one of the
modes transforms the state into �012� �= ��00�+ �11�
− �22�� /	3. With the help of this state the gate could be ap-
plied by means of teleportation to an arbitrary unknown state
�14�. In this sense, the measure of quality of the state �012� �
can serve as a tool to evaluate the quality of operation.

Using similar calculations as before, we can determine the
mixed two-mode state �012 produced by the scheme and the
success probability of the scheme for finite acceptance win-
dows on homodyne detections. The fidelity of the operation
can now be expressed as F= �012� ��012�012� �. Figure 6 shows
the resulting relations between the fidelity, the postselection
threshold X, and the probability of success.

VI. CONCLUSIONS

In summary, we have demonstrated that a steady supply
of pure non-Gaussian states possessing finite expansion in
the Fock-state basis, together with the experimentally readily
accessible Gaussian operations and Gaussian measurements,
is sufficient for universal quantum state manipulation and
engineering. The required ancilla non-Gaussian states could
be generated, e.g., using squeezing operations, coherent dis-
placements, and conditional single-photon subtraction �11�.
The conditional photon subtraction can be performed reliably
with avalanche photo-diode detectors even though their over-
all detection efficiency is on the order of 50% or even lower
�16�. The low efficiency only reduces the success probability
of the state-preparation scheme but not the fidelity of the
prepared state �11�. In contrast, such detectors are unsuitable
for direct implementation of measurement-induced non-
Gaussian operations using the schemes proposed in Refs.
�9,10� because the low efficiency would imply reduced fidel-
ity of the gate. In our approach we thus replace direct single-
photon detection by an indirect detection relying on off-line-
produced non-Gaussian states and homodyne detection. In
this way it is possible to achieve high fidelity at the expense
of the probabilistic nature of the scheme. Our generic scheme
involves several optimization possibilities and its efficiency
can be improved by tuning the transmittances of beam split-
ters and the widths of the acceptance windows of homodyne
measurements. Moreover, it is likely that for each particular
task the efficiency can be improved significantly by using a
specific dedicated scheme tailored to a given resource state
��N�.

Besides states with finite Fock-state expansion also other
classes of states could be sufficient for universal CV quan-
tum gate engineering. However, dealing with completely ge-
neric states in infinite-dimensional Hilbert space of the quan-
tized electromagnetic field is extremely difficult due to the a
priori infinite number of parameters. It is unlikely that the
question of sufficiency of a given state for universal CV
quantum gate engineering could be decided in a completely
general way. Instead, partial ad hoc solutions could be pro-
vided for certain finite-parametric classes of states �e.g., the
cubic phase state proposed in Ref. �7��. Identifying such po-
tentially useful classes of states is an interesting open prob-
lem which, however, is beyond the scope of our present
work.

Our findings shall find applications in advanced optical
quantum information processing and quantum state engineer-
ing. On more fundamental side, our results shed more light
on the quantum information processing power of non-
Gaussian states and they help to bridge the gap between
single-photon and continuous-variable approaches.
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FIG. 5. �Color online� Complete setup for implementation of the
nonlinear sign gate using only Gaussian operations and two-photon
states as a resource. ta and tb transmittances of the respective beam
splitters, while BS stands for a balanced beam splitter.
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Nonlinear potential of a quantum oscillator induced by single photons
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Experimental investigation of the nonlinear dynamics of a quantum oscillator is a long-standing goal of
quantum physics. We propose a conditional method for inducing an arbitrary nonlinear potential on a quantum
oscillator weakly interacting with light. Such an arbitrary nonlinear potential can be implemented by sequential
repetition of an elementary conditional X gate. To implement the X gate, a single photon is linearly coupled to
the oscillator and is subsequently detected by optical homodyne detection.

DOI: 10.1103/PhysRevA.90.013804 PACS number(s): 42.50.Ct, 42.50.Dv, 42.50.Wk

I. INTRODUCTION

In quantum physics it is crucial to be able to precisely
manipulate quantum systems. This ability is the key both to
experimental tests of fundamental natural principles and to
the actual development of quantum technology. The ultimate
aim in this direction is the implementation of a variety
of nonlinear transformations. One way of approaching this
daunting task lies in disassembling general operations into
elementary building blocks. For two-level (qubit) quantum
systems, such building blocks are the single-qubit rotations and
the two-qubit controlled NOT operation [1]. In a similar vein,
the basic building blocks for continuous-variable harmonic
oscillator systems [2,3] are the operations imposing quadratic
and cubic potentials [4,5]. The quadratic potential inducing
Gaussian operations can be considered readily available. A
general method of achieving any form of quadratic potential
uses squeezed states of light which interact with the oscillator
and are subsequently measured by an optical homodyne
detection [6–9].

However, squeezed states of light and optical homodyne
detections are not sufficient resources to induce highly nonlin-
ear potentials, such as the cubic one. Since fully deterministic
implementation of cubic nonlinearity is a very challenging
task [10], it is important to be able to induce a nonlinear
potential on a quantum oscillator at least conditionally, as it
is currently the only feasible way for studying the nonlinear
quantum dynamics. A straightforward, but complicated, way
is to use the typical decomposition of quantum operations
relying on annihilation â and creation a† operators [11–16].
These operators with clear Fock-state interpretation play an
important role in phase-insensitive applications [17], such as
entanglement distillation [18,19] or a version of the noiseless
amplification [20–22].

In this article we present a complementary approach which
allows inducing an arbitrary nonlinear potential V (X̂) on a
quantum oscillator by sequential application of the position
operator X̂ = (â + â†)/

√
2, which was also denoted as the

orthogonalizer [23], by an operation which we will call the X

gate. An optical scheme to achieve an operation m∗â + n∗â†

was also proposed in [24] using a standard approach with
nonlinear resources, while our scheme is more compact and
suitable for sequential application. The main benefit of using

*park@optics.upol.cz

X gate instead of the annihilation or creation operators is
that the former can be naturally extended to physical systems
other than light, such as mechanical oscillators or clouds of
atoms, and that the exact form of the potential can be adjusted
at will. As the resource for the X gate we are going to use
single-photon guns [25–32], which were recently extensively
developed for a broad class of applications. We analyze the
performance and feasibility of this methodology with regard
to realistic experimental tools and emphasize two exemplary
applications: generation of the cubic nonlinearity and efficient
state preparation of non-Gaussian states.

In Sec. II, we analyze how to implement the X gate in
various ways. We investigate the performance of our gate in
realistic situations in Sec. III. Applications of our gates are
summarized in Sec. IV. In Sec. V we conclude.

II. IMPLEMENTATION OF X GATE

A. Oscillator in a nonlinear potential

The quantum oscillator with a Hamiltonian operator Ĥ =
�ω(â†â + 1

2 ) + V (X̂), where X̂ is the position operator and
V (X̂) is a nonlinear potential, contains a mixture of free
linear evolution with frequency ω and nonlinear dynamics
induced by V (X̂). To obtain the pure effect of a nonlinear
potential on a quantum system, we assume the limit ω → 0 of
a low-frequency oscillator evolving very slowly. In this limit,
the unitary evolution operator U (X̂,τ ) = e− i

� V (X̂)τ , where τ

is the time duration of evolution in the potential, preserves
the statistics of position and affects only the statistics of the
complementary variable described by the momentum operator
P̂ = (â − â†)/

√
2i.

The evolution operator can be approximated by a Tay-
lor series U (X̂,τ ) = ∑∞

k=0
U (k)(X̄)

k! (X̂ − X̄)k around the initial
mean position X̄ of the oscillator. The finite truncation of this
Taylor series can be expanded as U (X̂,τ ) = ∏N

k=0(1 + λkX̂)
using the general theorem of algebra, where λk are related
to the complex roots of the polynomial, U (−λ−1

k ,τ ) = 0.
Any dynamics imposed purely by the nonlinear potential can
therefore be decomposed to a sequence of the nonunitary X
gates ÂX(λk) = 1 + λkX̂ controlled by complex parameters
λk . For a purely imaginary λk with the magnitude close to
zero, the operation ÂX(λk) is close to a unitary displacement
operator. For a larger magnitude of purely imaginary or real
λk , however, the X gate is inherently probabilistic, and its
action is nontrivial. Our approach suggests how to implement

1050-2947/2014/90(1)/013804(7) 013804-1 ©2014 American Physical Society



KIMIN PARK, PETR MAREK, AND RADIM FILIP PHYSICAL REVIEW A 90, 013804 (2014)

the individual X gates which are applied sequentially with
variable complex parameters λk to mimic the behavior of
slowly evolving quantum oscillators in the nonlinear potential.

B. Coupling an oscillator to light

Implementation of an individual X gate exploits one of two
kinds of coupling between a quantum oscillator and a single
mode of electromagnetic radiation. Under the approximation
of weak coupling for which the time duration is short enough,
the interaction can be represented by a unitary operator derived
from one of two possible interaction Hamiltonians. The beam
splitter (BS) interaction with ĤBS = iκBS(â†b̂L − b̂

†
Lâ), where

â is the annihilation operator of the quantum oscillator and
b̂L is the annihilation operator of the single mode L of
radiation, represents a natural coupling between different
modes of radiation varying in polarization, spatial properties,
or frequency [33]. It can also be used to describe coupling
with a continuous-wave or semicontinuous-wave regime of a
mechanical oscillator [34,35]. The second kind of coupling
is the quantum nondemolition (QND) coupling given by
ĤQND = iκQND(â† + â)(b̂†

L − b̂L)/2. This type of interaction
naturally appears for the coupling with spin ensembles [36,37]
and the pulsed regime of mechanical oscillators [23,38,39].

C. Elementary X gate based on BS coupling

We shall start by explaining the implementation of the X

gate for the BS coupling because it plays a prominent role
in all-optical implementations, which are in turn a natural
platform for experimental tests of the method. For reasons
which will become clear later, we generalize the X gate
ÂX(λ) = 1 + λX̂θ to a more general class of operations:

Â(λ−,λ+) = 1 + λ−â + λ+â†, (1)

where â and â† are the annihilation and creation operators,
respectively. Here λ+ and λ− are complex numbers which can
be adjusted at will. The conceptual scheme for implementing
the ideal operation (1) is depicted in Fig. 1. This scheme
is a measurement-induced operation which is composed of
the main implementation step and the correction step. In the
first step, the input oscillator mode interacts with the ancillary
mode L in the single-photon state |1〉L. The ancillary mode
L is subsequently measured by a setup which contains beam
splitters and homodyne detectors, and the state of the oscillator
mode is postselected when specific values are detected. This
process can be expressed as the projection onto a Gaussian
state |ζ 〉, which is represented by an operator L〈ζ |UBS|1〉L.
Here ÛBS = exp(−iĤBSt) = T n̂e−R∗b̂†

LâeRb̂Lâ†
T −n̂L stands for

the unitary operator of the beam splitter with transmission
coefficient T = cos κtBS, which couples the ancillary mode to
the oscillator. Here n̂ = â†â and n̂L = b̂

†
Lb̂L.

The projection |ζ 〉L〈ζ | can be implemented by an unbal-
anced heterodyne detection: the ancillary mode L is split at
an unbalanced beam splitter with transmission and reflection
coefficients T and R, and optical homodyne detections of
complementary quadratures X̂L = (b̂L + b̂

†
L)/

√
2 and P̂L =

(b̂L − b̂
†
L)/

√
2i are performed on each output port. Such a
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FIG. 1. (Color online) (a) Concept of the implementation of a
nonlinear potential by single-photon guns, (b) X gate for a single
mode of light using BS-type coupling, (c) X gate for a collective spin
of cloud of atoms in magnetic field, and (d) X gate for the vibration
mode of a mechanical oscillator.

measurement can be represented by the projection onto a state:

L〈x|L′ 〈p|UBS|0〉′L
=L 〈0| exp

[
−x2 + p2

2
+

√
2(xT + ipR∗)bL

+ R∗2 − T 2

2
b2

L

]

∝L 〈0| exp
[
A∗bL + B∗b2

L

] ≡L 〈A,B|, (2)

where A = √
2(xT − ipR) and B = 2−1(R2 − T 2) are com-

plex measurement parameters with −1/2 < |B| < 1/2, whose
phases arg A and arg B can be chosen arbitrarily.

The full operation by the homodyne detection looks like

L〈xθ |UBS|1〉L ∝ T n̂ exp

[
−

√
2xθe

−iθR∗â − R∗2e−2iθ â2

2

]

×
(√

2

T
xθ + R∗e−iθ

T
â + Reiθ

T
â†

)
, (3)

and the complete operation by the heterodyne measurement is
summarized as

L 〈A,B| UBS|1〉L = exp

[
A∗ R

T
â + B∗ R2

T 2
â2

]

× T n̂−1(A∗ + 2B∗R∗â + Râ†). (4)

The operator (4) is composed of three parts: the ideal
operation A∗ + 2B∗R∗â + Râ† consisting of the proper
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superposition of annihilation and creation operators, the error
operator exp[A∗Râ + B∗R2â2], and another error operator
T n̂−1, which we will denote as pure attenuation. These two
sources of error need to be considered separately, as each
of them possesses very different properties. The error term
exp[A∗Râ + B∗R2â2] can be compensated by a correction
operation using optical ancilla L′ in the vacuum state:

L′
〈
A′,B ′∣∣UBS|0〉L′ = T ′n̂ exp[A′∗R′â + B ′∗R′2â2], (5)

which is implemented in the same way as the main gate in
Eq. (4), only with a replacement of a single photon by the
vacuum state in the ancillary mode. With A′ = −A/T , B ′ =
−B/T 2, and R′ = R we can erase the error and obtain an
approximate version,

ÂBS = (T ′T )n̂(A∗ + 2B∗R∗â + Râ†), (6)

of the generalized X gate (1) using the BS coupling. The de-
sired gate is accompanied by an increased noiseless attenuation
(T ′T )n̂ as an unavoidable cost of transforming an ill-behaved
error into a well-behaved one. It should be noted that in the
case of a highly transmissive beam splitter R � 1, all sorts of
errors become less prominent even up to the point when the
correction step is not necessary. The cost of this strategy is the
diminished success rate and a high sensitivity to the quality of
ancilla.

The noiseless attenuation error caused by (T ′T )n̂ becomes
significant when the elementary X gates are combined into a
more complicated function. For this purpose we have to apply
the relations T n̂â = âT n̂−1 and T n̂â† = â†T n̂+1 to move the
attenuation term. As a consequence, an arbitrary polynomial∏N

i=0(1 + λiX̂) needs to be implemented as

∏
i

T n̂
i

(
1 + λi

Ti â + T−1
i â†

√
2

)
=

[
N∏
i

(1 + λiX̂)

]
Tn̂

N , (7)

whereTi = ∏i
j=1 Tj . As can be seen, the noiseless attenuation

is effectively applied only once, solely on the initial state.
In principle it can be approximatively compensated by the
noiseless amplification conditionally approaching operation
Gn̂ with G > 1 [40]. On the other hand, the noiseless
attenuation has a very clear Fock space interpretation, and it
is always acting in a predictable manner. In many experiments
it can therefore be taken into account and compensated by
manipulating the measured data.

D. Elementary X gate based on QND coupling

Although the QND coupling can be established between
different modes of radiation [6,8], it is much more important
in experiments with atomic spin ensembles [36,37] or a pulsed
regime of mechanical oscillators [23,38,39], where it appears
naturally. Adapting the X gate for this coupling therefore
allows expanding the methods of quantum optics even to
these systems. For the QND coupling, represented by the
unitary operator ÛQND = e−iκX̂P̂L , where X̂ = (â + â†)/

√
2

and P̂L = (b̂L − b̂
†
L)/

√
2i, of optical mode L to the oscillator

the complete gate can again be expressed as

L〈A,B|UQND|1〉L ∝ exp

[
Aκ√

2
X̂ +

(
B

2
− 1

4

)
κ2X̂2

]

×
{
A + κ

(
2B − 1√

2

)
X̂

}
, (8)

where A and B are the same as before and κ = κQNDt . In
a similar manner as for the BS interaction, the correction
operation required to eliminate the error term exp[ Aκ√

2
X̂ +

(B
2 − 1

4 )κ2X̂2] is L〈−A, − B|ÛQND|0〉L = exp[−A κ√
2
X̂ −

(B/2 + 1/4)κ2X̂2], which is implemented using another QND
interaction with the optical mode being in vacuum state.
The redundant exp[−κ2X̂2/4] can be in part compensated by
squeezing the ancillary state, whose effect can be described by
exp[tanh rκ2X̂2/4]. In contrast to the BS type of coupling to
the optical mode, after erasing the error term, we approach
the ideal X gate without the noiseless attenuation errors.
Moreover, the X gate can also be implemented by replacing the
homodyne detection by a photon-number-resolving detector
and changing the ancilla. The resulting gate,

L〈0|UQND(|0〉L + c1|1〉L) = exp

[
−κ2X̂2

4

] (
1 + c1

κ√
2
XA

)

(9)

always has a nonzero probability of success. This approach
will become fully feasible with the advent of efficient photon-
number-resolving detectors.

III. REALISTIC CONSIDERATIONS

A. Requirements on the quality of single photons

The single photons employed by the X gate are an
experimental resource sensitive to imperfections. They usually
do not appear in the pure form |1〉L, but rather in a mixture
η|1〉L〈1| + (1 − η)|0〉L〈0| [41], which may reduce the quality
of the gate. To quantify the quality of a single photon that is
necessary for successful implementation of the X gate, we
compare the performance of the gate with methods using
coherent-state ancillae. The required quality of the single-
photon gun is then characterized by the critical efficiency ηc,
the value of η for which the fidelity of the gate is equal to the
classical threshold.

B. Performance analysis and the classical threshold

For the analysis of performance, we apply the X gate to a set
of quantum states and compare their fidelities. For this analysis
it is advantageous to consider quantum states which are
orthogonalized by the X operation because then the operation
1 + λX effectively creates a qubit whose fidelity has a good
operational meaning. The states which satisfy this criterion
are the coherent states with purely imaginary amplitudes |β〉,
with β = i|β|; single-photon state |1〉; and the squeezed state
|ξ 〉 = exp[−ξ/2â2† + ξ/2â2]|0〉. For these states, the fidelities
are compared to the classical benchmark which is obtained by
considering the gate with only a classical state used as an
ancilla. As any classical state can be represented as a mixture
of coherent states, it is sufficient to consider a coherent state
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as the ancilla and maximize over its amplitude. The operation
with the classical resource can be written as

2〈x = 0|ÛBS|α〉2

∝ T n̂ exp[αRT −1â†] exp

[
−R2

2
â2

]
exp[αRT â]

= exp[αRâ†] exp[αRâ] exp

[
− R2

2T 2
â2

]
T n̂. (10)

Note that it is simply impossible to obtain the desired X

operation perfectly with a classical resource regardless of any
correction we may apply.

Another benchmark is obtained by trying to achieve the
target operation by using only unitary Gaussian operations:
displacement and squeezing. These operations are experi-
mentally feasible, but on their own they are not sufficient for
obtaining any kind of higher-order nonlinearity. For the target
single-photon input state, the Gaussian benchmark is 0.82,
which leads to ηc ≈ 0.7 for T ≈ 0.734. For the other input
states we are considering, these unitary Gaussian operations
give a lower benchmark and do not need to be considered.

With a realistic resource single photon, the full gate (with
the correction) transforms the input state |ψ〉 into

ρ ∝ T n̂[ηR2/λ2T 2(1 + λâ ± λa†)|ψ〉〈ψ |(1 + λâ† ± λa)

+ (1 − η)|ψ〉〈ψ |]T n̂. (11)

We notice that for a very small T � 1, the effect of lower
η in single-photon generation can be completely ignored,
and a perfect target operation is achieved regardless of η,
but only at the cost of a significant noiseless attenuation.
This can be seen as a conditional transformation of the
resource state’s impurity to noiseless attenuation, which
does not significantly reduce the purity of the state. This
is a valuable strategy if the noiseless attenuation does not
play an important role. However, if this is not the case
or if the attenuation cannot be very well compensated by
a suitable noiseless amplification, the efficiency η remains
important.

In Fig. 2 we show the analysis of a trial gate operation
1 + λâ − λâ† applied to selected quantum states for various
levels of quality of the single-photon ancilla, where their
fidelities with the ideal states are compared to the classical
threshold. When λ is as small as 0.1, the operation is generally
well simulated by a displacement operator, and the classical
threshold fidelity is typically as high as 0.99. For large λ = 1.5,
on the other hand, ηc ≈ 0.55 for a coherent state |β = 0.1〉,
and ηc ≈ 0.35 for a coherent state |β = 1〉. For a single-mode
squeezed vacuum state input |ξ 〉 = Ŝ(ξ )|0〉, ηc ≈ 0.7 for
|ξ = 0.1〉, and ηc ≈ 0.6 for |ξ = 1〉. For single-photon input
|1〉, for T ≈ 0.45 we can achieve ηc = 0.12. Therefore, with
the current quality of the single-photon gun our scheme can
surpass classical resources rather easily. It is therefore feasible
to experimentally observe the nonclassical performance of
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FIG. 2. (Color online) Fidelity vs transmission coefficient T for operation 1 + 1.5â − 1.5â† on coherent-state inputs (a) |β = 0.1〉 and (b)
|β = 1〉, squeezed state inputs (c) |ξ = 0.1〉, and (d) single photon |1〉, with imperfect single-photon ancilla η|1〉L〈1| + (1 − η)|0〉L〈0|. Near
T ≈ 1, the fidelity is high for η = 1 (blue solid line) but drops rapidly when the ancilla is imperfect [η = 0.8 (red dashed line), 0.6 (green
dot-dashed line) and 0.4 (orange double-dot-dashed line)] below the classical benchmark (black dotted line). The values for the classical
benchmark are 0.79 for coherent states and squeezed states and 0.52 for the single-photon state.
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(a) Single photon input |1
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FIG. 3. (Color online) F (ε) vs P (ε) for (a) single-photon input |1〉 and (b) coherent-state input |β = 1〉 for the operation 1 + 1.5â − 1.5â†

with (blue solid line) a perfect single-photon ancilla and (red dashed line) an imperfect single photon with η = 0.8 for the homodyne
measurement window 10−3 � ε � 1. The setup is optimized for the largest F . Here no correction is considered. F = 0.95 and P = 0.10 are
achieved for a perfect single-photon input, and F = 0.91 and P = 0.10 are achieved for a coherent-state input.

the elementary X gate with limited |λ|. Note that the per-
formance of the gate for large λ can be used as a very strict
operational measure of single-photon states, as in this case
even resource states with significant negativity in the Wigner
function [41] might not be sufficient to beat the classical
threshold.

C. Success rate vs fidelity

So far we have been concerned with ideal projections onto
quadrature eigenstates. This is just an idealization, and in prac-
tice such a projection onto a quadrature eigenstates has a zero
probability of success. In practice it needs to be approximated
by performing a homodyne detection and postselecting upon
detecting a value which falls closely into a small interval ε

around the sharp target value x0, which necessarily reduces the
quality of the gate as a cost. The fidelity with the target state
|ψt 〉 of this realistic gate applied to state ρIN can be expres-
sed as F (ε) = ∫ x0+ε

x0−ε
dxTr[(|ψt 〉〈ψt | ⊗ |x〉L〈x|)UBSρIN ⊗

|1〉L〈1|U †
BS]/P (ε), where the probability of success is

P (ε) = ∫ x0+ε

x0−ε
dxTr[L〈x|UBSρIN ⊗ |1〉L〈1|U †

BS|x〉L]. In Fig. 3,
the fidelity and the probability of success of the operation
1 + 1.5â − 1.5â† applied to a single photon and to a coherent
state are plotted both for a perfect ancilla η = 1 and a realistic
ancilla η = 0.8. We can see that although there is a visible
drop of fidelity for a perfect single-photon ancilla when we
increase ε, the fidelity still remains quite high and obviously
above the classical threshold. Furthermore, the reduction of
fidelity is less prominent for the imperfect ancilla, which is
very promising for the eventual experimental implementation.

Our scheme can be compared to the previous one proposed
in [24], which employs inline coupling into a parametric down-
converter, interferometer, and two single-photon detectors.
Apart from the feasibility, our scheme can exhibit success rates
of around 0.05, while the previous proposal did not surpass
10−12, mainly due to the low rate of the downconversion
process.

IV. MULTIPLE GATES FOR APPLICATIONS

A. Conditional generation of cubic nonlinearity

As a prominent example, a non-Gaussian cubic Hamilto-
nian up to the quadratic expansion can be achieved as

exp[iχX̂3] ≈ 1 + iχX̂3 − χ2

2
X̂6

∝
[

1 −
(

χ

−1 + i

)1/3

X̂

][
1 +

(
χ

1 − i

)1/3

X̂

]

×
[

1 − (−1)−2/3

(
χ

−1 + i

)1/3

X̂

][
1 −

(
χ

1 + i

)1/3

X̂

]

×
[

1 +
(

χ

−1 − i

)1/3

X̂

][
1 − (−1)−2/3

(
χ

1 + i

)1/3

X̂

]
,

(12)

where χ is the nonlinearity strength and the attenuation
is omitted for simplicity. This second-order expansion is
sufficient to achieve the cubic nonlinearity for a general
purpose [10]. Exploiting the emerging single-photon guns, it
will be the first step towards controlled nonlinear dynamics of
a quantum oscillator. The identification of hidden nonclassical
features of quantum states produced by the cubic nonlinearity
has been proposed [42].

B. Arbitrary wave-function generation

It is well known that any quantum state can be approximated
with an arbitrarily high precision by a finite superposition of
Fock states up to N th order as |ψ〉 = ∑N

n=0 cnâ
†n/

√
n!|0〉. We

observe that this state can be constructed by a polynomial of â†

applied to the vacuum state [12]. This operation is achieved by
the repeated application of the elementary operation 1 + λâ†,
which is a special case of Eq. (6) with B = 0. Complementary
to this approach, we can also use the continuous-variable
operators to build not the discrete Fock state expansion of the
state but rather the continuous-variable wave function of
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FIG. 4. (Color online) Fidelity of the ideal coherent-state super-
position Nc(|β〉 + | − β〉) with the generated cat states. Depending
on the highest photon number nmax which coincides the repetition
number of the X gate, we can achieve the approximate cat state very
efficiently. Green (light gray), blue (dark gray), and red (medium
gray) bars correspond to β = 1,2,3, respectively.

the state. The wave function of the general state in the
coordinate representation can be simply expressed as

ψ(x) = 〈x|ψ〉 =
N∑

n=0

cnHn(x)

π1/4
√

2nn!
e−x2/2 ≡ G(x)〈x|0〉, (13)

where G(x) = ∑N
n=0

cnHn(x)√
2nn!

and Hn(x) are Hermitian poly-

nomials. Therefore, we can write |ψ〉 = G(X̂)|0〉. This is
simply a wave function of the vacuum state multiplied by
an N th-order polynomial of x, which is exactly obtained by
N -fold application of the X gates. The number of required
operations can be reduced by attempting to generate a suitably
squeezed version of the target state and then manipulating
the Gaussian envelope by another squeezing operation [43].
Therefore, the X gate can be seen as a universal elementary
gate sufficient for general state preparation, the continuous
counterpart of the particle-like single-photon addition.

To demonstrate the state generation aspect of our scheme,
let us attempt to generate an equal superposition of coherent
states, Nc(|β〉 + | − β〉), where Nc = (2 + 2e−2β2

)−1/2 is the
normalization factor. This quantum state is an important
resource in quantum information processing and funda-
mental tests of quantum mechanics [44–47] and has been
realized experimentally for β � 2 [48–51]. It alternatively
can be written as Nce

−β2/2(exp[βâ†] + exp[−βâ†])|0〉 =
N ′

c(nmax)
∑nmax

n=even 2(βâ†)n/n!|0〉, where N ′
c(nmax) is a normal-

ization factor for a finite expansion up to the maximum photon
number nmax in a truncated form. This state is generated

by the following polynomial of â† on the vacuum state:∑nmax
n=even 2(βâ†)n/n!. The dependence of the fidelities on nmax

with the exact even cat state is drawn in Fig. 4. We note that
for nmax = 16, we can achieve the fidelity of 0.993 for β = 3.
An odd cat state can be constructed in a completely equivalent
way. We also note that no attenuation effect exists in the state
generation due to the initial vacuum state the scheme acts on.

C. Multiple X gates in a single-shot operation

Implementing a potential F (x̂) by the sequential application
of X gates is accompanied by an exponential decrease of the
probability of success. This issue can be overcome by applying
the total potential consisting of several X gates directly in a
single step. First, a specific ancillary state f (X̂L)|0〉L, where
f (x̂) = F (−x̂/κ), can be generated off-line using X gates,
as in [10]. After a QND coupling between the ancilla and
the oscillator, the ancillary mode is measured by homodyne
detection, and the target operation is achieved:

L〈x0 = 0|UQNDf (X̂L)|0〉L =L 〈x0 = 0|f (−κX̂)UQND|0〉
= f (−κX̂)L〈x0 = 0|UQND|0〉 = F (X̂) exp

[ − 1
2κ2X̂2

]
.

(14)

The factor exp[−κ2X̂2/2] can be compensated by a suitable
squeezing of the ancilla as before. The same approach can be
applied to the operations based on the beam splitter interaction.
In this scheme the unavoidable attenuation is suppressed as a
side benefit.

V. CONCLUSIONS

We have presented a methodology for the conditional in-
duction of various nonlinear potentials in quantum oscillators
and conditional preparation of wave functions of the quantum
oscillators. This method is based on the sequential application
of the elementary X gates supplied by the single-photon guns.
Based on a wide class of emerging single-photon guns [25–32],
it is broadly applicable for various quantum oscillators
(optical, atomic, or mechanical). The presented operation will
therefore open a broad area of very anticipated investigation
of controllable nonlinear dynamics of quantum oscillators.
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We propose a deterministic implementation of weak cubic nonlinearity, which is a basic building block of a
full-scale continuous-variable quantum computation. Our proposal relies on preparation of a specific ancillary
state and transferring its nonlinear properties onto the desired target by means of deterministic Gaussian operations
and feed forward. We show that, despite the imperfections arising from the deterministic nature of the operation,
the weak quantum nonlinearity can be implemented and verified with the current level of technology.
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I. INTRODUCTION

Ever since it has been first mentioned by Feynman [1],
quantum computation has been the holy grail of quantum-
information theory, because the exponential speedup it offers
promises to tackle certain computational problems much faster
than any classical computer could [2]. The original approach
to quantum computing relied on manipulation of discrete
quantum systems [3], but later it was shown that the same
speedup can be achieved by computing with continuous-
variable (CV) quantum systems, and that CV systems may
be even more effective [4,5].

Besides the readily available operations with Hamiltonians
composed of first (linear) and second (quadratic) powers of
quadratic operators x̂ and p̂, CV quantum computation re-
quires a single kind of nontrivial resource—a single operation
with a Hamiltonian at least cubic (third power) in quadrature
operators [4]. Unfortunately, the currently achievable experi-
mental interaction strengths are too low compared to noise to
be of use.

Fortunately, the need for currently unavailable cubic unitary
evolution may not be so dire. Let us recall the original
statement of Lloyd and Braunstein [4]: If one has access to
Hamiltonians Â and B̂, one can approximatively implement
an operation with Hamiltonian i[Â,B̂]. Approximatively is the
key term here, meaning that the desired operation is engineered
only as a quadratic polynomial of the interaction time:

eiÂt eiB̂t e−iÂt e−iB̂t ≈ e−[Â,B̂]t2 + O(t3). (1)

Consequently, even the initial operations need not be unitary—
their quadratic approximations are fully sufficient. What this
means is that if we take interest in a sample cubic interaction
with Hamiltonian Ĥ ∝ x̂3, we need not implement the unitary
eiχx̂3

, where χ is a real parameter, but it is enough to be able
to perform operation

O6(x̂) = 1 + iχx̂3 − χ2x̂6/2. (2)

This is the lowest order expansion for which the commutator
trick (1) works, but let us start with the real lowest order
expansion, 1 + βx̂3, where β is a complex number. This
expansion behaves as a weak cubic coupling if β is imaginary
and has the added benefit that it can be used to compose

(2) when the respective values of β are complex and chosen
properly. In principle, even this gate can be further decomposed
into series of 1 + γ x̂ (γ ∈ C) operations [6]. These phase
sensitive gates can be implemented probabilistically on a
traveling beam of light by subsequent application of photon
subtraction and photon addition, represented by operators
â = (x̂ + ip̂)/

√
2 and â† [7–9]. They are very useful for

preparing various ancillary states, but for use in a full-fledged
information processing we are interested in their deterministic
implementation.

II. IDEAL IMPLEMENTATION

To this end we employ the approach of [10], thoroughly dis-
cussed in [11], where it was suggested that a unitary operation
acting on a state can be deterministically implemented with
the help of a proper resource state, a quantum nondemolition
(QND) coupling, a suitable measurement, and a feed-forward
loop. Explicitly, for operation O(x̂) acting on the pure state
|ψ〉 = ∫

ψ(x)|x〉dx, the resource state is O(x̂)|p = 0〉. After
QND coupling, represented by the unitary ÛQND(λ) = eiλx̂2p̂1 ,
is employed and the overall state is transformed to∫

ψ(x)O(y)|y − λx,x〉dxdy, (3)

the ancillary resource mode gets measured by a homodyne
detection. We can for now assume λ = 1, as the overall
message remains unchanged. For any detected value q the
output state is ∫

ψ(x)O(x + q)|x〉dx. (4)

To obtain the desired result, one either postselects only for
situations when q = 0 was detected, or applies a feed forward
which would compensate for x + q in the argument of the
operator. It has been shown in [10] that if the desired operation
O(x) is a unitary operation driven by a Hamiltonian of order
n, the feed-forward operation requires a Hamiltonian of order
n − 1. Explicitly, imperfections in the operator O(x̂ + q) =
exp[iχ (x̂ + q)3] can be compensated by the unitary operator
ÛFF = exp[−iχ (3qx̂2 + 3q2x̂)], which is a combination of
displacement, squeezing, and phase shifts. The operation
(2) we are interested in is not unitary, but since it is an
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approximation of a unitary driven by a cubic Hamiltonian, a
feed forward of squeezing and displacements should perform
adequately, up to some error. We’ll get to this issue later.
In fact, the operations available for feed forward limit us in
what we can do. With squeezing and displacement we can
implement only cubic operations. Of course, with them we
could also tackle Hamiltonians of the fourth order, and so on.
And there is another limitation—since the feed forward must
be deterministic and noiseless, and therefore unitary, it can
be only used to deterministically compensate unitary (at least
approximatively) operations whose Hamiltonian is Hermitian.
Therefore we cannot use the trick of implementing a series
of 1 + γ x̂ operations; we have to implement operation (2) in
one go. Consequently, we need a sufficiently complex resource
state.

III. RESOURCE STATE GENERATION

Let us now shift our attention to the required resource
state. In realistic, even if idealized, considerations, one has
to, instead of a position eigenstate, use a squeezed state
S|0〉 = [

∫
exp(−x2/g)|x〉dx]/(πg)1/4, which approaches the

ideal form as g → ∞. The resource state can now be expressed
as O(x̂)Ŝ|0〉 = ŜO(x̂/

√
g)|0〉 which is a state finite in a

Fock basis with a superficial layer of squeezing. As it has
a finite structure, the state can be engineered by a sequence
of six photon additions [12] or photon subtractions [13].
This is an extremely challenging task; let us therefore first
focus at the lowest nontrivial cubic Hamiltonian expansion,
O3(x̂) = 1 + χx3, which is a feasible extension of recent
experimental works [14]. The appropriate resource state looks
like

Ŝ(1 + χ ′x̂3)|0〉 = Ŝ

(
|0〉 + χ ′ 3

2
√

2
|1〉 + χ ′

√
3

2
|3〉

)
, (5)

with χ ′ = χg−3/2. This state can be generated from a squeezed
state by a proper sequence of photon subtractions and
displacements [13], which acts as (â − α)(â − β)(â − γ )Ŝ|0〉.
Since the squeezing operation transforms the annihilation
operator as Ŝ†âŜ = μâ − νâ†, where μ = cosh(ln

√
g) and

ν = sinh(ln
√

g), the required displacements can be obtained
as a solution of the set of equations:

A = αβγ, α + β + γ = 0,
(6)

2
√

2ν3 = Aχ ′, 3ν2 + 3μν = (αβ + αγ + βγ ) ,

where A is a constant parameter related to normalization. The
solution exists and it can be found analytically as

α = ξ +
√

ξ 2 − 4ζ

2
,

β = ξ −
√

ξ 2 − 4ζ

2
, (7)

γ = −(α + β).

Here ξ and ζ are solutions of the set of equations

xy + C1 = 0, y − x2 − C2 = 0, (8)

where C1 = ν32
√

2χ ′−1 and C2 = 3ν2 + 3μν. The solu-
tions of (8) always exist and they can be obtained analytically

using the Cardan formula. The squeezing used in the state
generation can be in general different from the squeezing in (5).
However, squeezing can be considered to be a well accessible
operation, and we shall therefore not deal with this in detail.
It should be noted that an alternative way of preparing the
state (5) lies in performing a suitable projection onto a single
mode of a two-mode squeezed vacuum state. Engineering of
the proper measurement, which too requires three avalanche
photodiodes (APDs) and three displacements, leads to similar
equations as in the previous case (6) with the solution of the
same form.

IV. REALISTIC IMPLEMENTATION

With the resource state at our disposal we can now look
more closely at the two ways to implement the gate, the
probabilistic and the deterministic, in order to compare them
and see what is the manifestation of high order nonlinearity
in the deterministic case. The probabilistic implementation is
rather straightforward. Using the resource state (5) we are able
to transform the initial state to

|ψ0〉 =
∫

ψ(x)O(x)e−x2/2g|x〉dx, (9)

and as the squeezing of the resource state approaches infinity,
the produced state approaches its ideal form. The final state
is always pure and the actual composition of the operator
On(x) can be arbitrary, allowing us, for example, to implement
the operator O in n different nonunitary steps. On the other
hand, if the resource squeezing is insufficient compared to the
distribution of the state in phase space, it seriously affects some
properties of the state—for example, moments of x quadrature
may not be preserved any more.

But let us move toward the more interesting part, the
deterministic approach. In this case the operation produces
a mixed state

ρ ′ =
∫

P (q)|ψq〉〈ψq |dq. (10)

Here, P (q) represents the probability of measuring a specific
outcome q, and

|ψq〉 = 1√
P (q)NR

∫
ψ(x)e−(x+q)2/2gO(x + q)

× e−iχq3−i3χ(xq2+x2q)|x〉dx, (11)

where NR is the norm of the resource state, stands for
the respective quantum state corrected by feed forward.
Ideally, O(x + q)e−i3χ (xq2+x2q) ≈ O(x), but this relation can
obviously work only when both x and q are small enough
for the exponent to be reasonably approximated by the finite
expansion On. It is, therefore, quite unfortunate that the very
condition required for the operation to work flawlessly, the
need for g → ∞, is compatible with the feed forward only
in the limit of χ → 0. To quantify these properties in greater
detail we need to employ a suitable figure of merit.

V. ANALYSIS

To evaluate the quality of the approximate operation is not
a straightforward task. If we want to conclusively distinguish
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the cubic type nonlinear interaction from a Gaussian one, we
can take advantage of the known way the quadrature operators
transform: x̂ → x̂, p̂ → p̂ + χx̂2. If we apply the operation,
in form of a black box, to a set of known states, we can analyze
the transformed states to see whether the operation could be
implemented by a suitable Gaussian, or if it is more of what we
aim for. The analysis can be as easy as checking the first two
moments of the quadrature operators, because the nonlinear
dependence of 〈p̂〉 on 〈x̂〉 can not be obtained by a Gaussian
operation, unless we consider a rather elaborate detection-and-
feed-forward setup, which would, however, introduce an extra
noise detectable either by checking the purity of the state, or
by analyzing higher moments 〈x̂2〉 and 〈p̂2〉.

The case with a purity of 1 is straightforward to verify—
as soon as the first moments have the desired form, 〈x̂ ′〉 =
〈x̂〉 and 〈p̂′〉 = 〈p̂〉 + χ〈x̂2〉, we can be certain a form of the
desired non-Gaussianity is at play. In the presence of noise,
the confirmation process is more involved, and we shall deal
with it in a greater detail.

It needs to be shown that, in comparison to the deterministic
approximation, no Gaussian operation can provide the same
values of moments 〈x̂ ′〉, 〈x̂ ′2〉, and 〈p̂′〉 without also resulting
in a significantly larger value of moment 〈p̂′2〉 caused by
the extra noise. The complete Gaussian scheme consists of
an arbitrary Gaussian interaction of the target system with
a set of ancillary modes followed by a set of measurements
of these modes yielding values which are used in a suitable
feed forward to finalize the operation. In the case where the
approximate transformations approach the ideal scenario, i.e.,
when 〈x̂ ′〉 = 〈x̂〉, 〈x̂ ′2〉 = 〈x̂2〉, and 〈p̂′〉 = 〈p̂〉 + χ〈x̂2〉, only
a single ancillary mode is sufficient, the optimal Gaussian
interaction is in the QND interaction with a parameter λ, and
after a value of ξ is measured by a homodyne detection, the
feed-forward displacement of κξ 2 ensures the correct form
of the three moments. In the end, the Gaussian approximated
state can be expressed as

ρ ′′
S =

∫
dxD̂S(κx2)A〈x|ÛQND(λ)ρ̂S

⊗ |0〉〈0|Û †
QND(λ)|x〉D̂†

S(κx2), (12)

where the subscripts S and A denote the signal and the ancillary
mode, respectively. The high order classical nonlinearity is
induced by the nonlinear feed forward, represented by the
displacement D̂(α). The strength of the QND interaction λ

remains a free parameter over which can the procedure be
optimized to obtain the best approximation characterized by
the minimal possible value of the extra noise term in 〈p̂′2〉.

We analyze the aforementioned properties over a set of
small coherent states α with |α| < 2. We compare the state
obtained by the approximative cubic interaction with the state
created by the Gaussian method. In principle, this could be
done for both the deterministic and the probabilistic approach,
but since the probabilistic approach has the potential to
work perfectly, we shall keep to deterministic methods in
our comparative endeavors. For each coherent state and its
cubic-gate transformed counterpart, we can, from knowledge
of the first moments of quadrature operators, estimate the
actual cubic nonlinear parameter and use it to construct
the benchmark Gaussian-like state (12). The final step is
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FIG. 1. (Color online) (a) First moments relative to the real part
of α. Solid red and blue lines represent the ideal values of 〈p̂〉 and
〈x̂〉, respectively. Red and blue crosses then show these values for the
deterministic non-Gaussian approximation, while red and blue circles
do so for the Gaussian approximation. Dashed green line is a quadratic
fit for 〈p̂〉. The experimental parameters are g = 1 and χ = 0.03.
(b) Second moments relative to the real part of α. Solid red and
blue lines represent the ideal values of 〈p̂2〉 and 〈x̂2〉, respectively.
Red and blue crosses then show these values for the deterministic
non-Gaussian approximation, while red and blue circles do so for the
Gaussian approximation.

to compare the extra noise present in p̂ quadrature—if the
added noise for the approximate state is below the Gaussian
benchmark, we can assume a non-Gaussian nature of the
operation.

As an example, let us look at a particular scenario, in
which the deterministic cubic gate was applied to a set
of coherent states with the imaginary part of the complex
amplitude constant. The effect of the operation is illustrated
in Fig. 1. Figure 1(a) shows the first moments and reveals
that for this purpose, effective cubic nonlinearity of χeff = 0.1
can be reliably obtained for both the non-Gaussian and the
Gaussian approaches. Differences arise, though, for the second
moments, where the value of the Gaussian quadrature moment
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FIG. 2. (Color online) Schematic experimental setup of the
deterministic x3 gate. BS, beam splitter; PBS, polarization beam
splitter; PS, phase shift; PR, polarization rotator; APD, avalanche
photodiode; HD, homodyne detection; and D, displacement.

〈p̂2〉 is observably higher than the value of its non-Gaussian
counterpart. The values of the Gaussian moment were obtained
by optimizations of (12) for each particular value of Reα; it
is, therefore, a stronger benchmark than a universal Gaussian
operation, working over the whole range of Reα, would
be. And it is still beaten by the imperfect deterministic
non-Gaussian method with no squeezing in the ancillary mode.

VI. EXPERIMENTAL SETUP

The resource state generation requires three-photon sub-
traction from a squeezed or a two-mode squeezed light, with
appropriate displacements (Fig. 2). Two photon subtractions
have been already implemented [14] and three of them are
within reach. The resource state is then coupled with the input
using a QND gate with offline squeezing [15,16], which can be
modified as to reliably manipulate the non-Gaussian resource
state [17]. The final step lies in performing a sequence of
feed forwards driven by a homodyne measurement of the
ancilla [10]. Of those, the only nontrivial one is given by
the unitary eiλx2

, where the actual value of λ depends on
the measurement. This operation can be decomposed into a
sequence of a phase shift by φ1, squeezing with gain gf ,
and another phase shift by φ2, where the parameters satisfy
tan φ1 tan φ2 = −1, tan φ1 = gf , and (1 − g4

f ) cos φ1 sin φ2 =
2gf λ. Adjusting the squeezing gain on the fly can be done by
exploiting the universal squeezer [15,18], where the amount
of squeezing is controlled by changing the ratio of the beam
splitter, which can be done by a sequence of a polarization
beam splitter, the polarization rotator, and another polarization
beam splitter, where the rotator controls the splitting ratio.
The nonlinear dependence of the feed-forward parameters

on the measurement results requires a sufficiently fast data
processing, but that too is available today [19].

VII. CONCLUSION

We have proposed an experimentally feasible way of
deterministically achieving weak nonlinearity of the third
order. The procedure effectively engineers the operation on a
single photon level and then deterministically cuts and pastes
the properties onto the target state. This is reminiscent of the
teleportation based gates presented in [20,21], but there are
a few crucial differences. In the teleportation based gates,
there is only a single resource state for both the teleportation
and for the imparting of the nonlinear properties. As such,
the state needs to be highly entangled, because otherwise the
state would be transferred with too much noise to be of any
further use. The need for a high entanglement then clashes with
the limited-photon-number nature of the nonlinearity. In our
implementation, the ancillary resource state has no squeezing
at all, which allows the imparted nonlinearity to be observably
large, while the Gaussian mediating interaction is driven by
strong squeezing, ensuring minimal noise added during the
operation. The limited number of photons still plays a role,
though, and the nonlinearity can be faithfully applied only to
target states which are sufficiently weak. Furthermore, since
there is no such thing as a free lunch, the subsequent use of the
transformed state in attempts to generate higher nonlinearities
as per [4] requires higher and higher numbers of single photons
used in the engineering.

The approach is not flawless. There are several sources of
noise which can be simultaneously reduced only in the limit of
an infinitely small (read unobservable) interaction. This is due
to the finite photon approximation of the cubic gate not being
unitary and therefore not perfectly correctable by the unitary
feed forward. Nevertheless, we have shown that even with
this noise, a demonstration of decisively non-Gaussian high
order quantum deterministic nonlinearity going well beyond
classical attempts, based on higher order nonlinearity in the
feed-forward loop, can be observed already now.
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Unitary non-Gaussian nonlinearity is one of the key components required for quantum computation and other
developing applications of quantum information processing. Sufficient operation of this kind is still not available,
but it can be approximatively implemented with the help of a specifically engineered resource state constructed
from individual photons. We present experimental realization and thorough analysis of such quantum resource
states and confirm that the state does indeed possess properties of a state produced by unitary dynamics driven
by cubic nonlinearity.
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I. INTRODUCTION

Nonlinear interactions capable of manipulating the quan-
tum state of the harmonic oscillators form a very challenging
area of recent development in the field of modern quantum
physics. Handling these interactions is necessary not only
for the understanding of quantum nonlinear dynamics of the
harmonic oscillators, but also for achieving the standing long-
term goal of quantum information—the universal quantum
computation [1,2]. The operations needed are unitary, and both
Gaussian and non-Gaussian [3]. For a harmonic oscillator rep-
resenting a single mode of electromagnetic radiation, Gaussian
operations are relatively easy to obtain, but unitary single-
mode non-Gaussian nonlinearities are either not available or
are too weak to have an observable quantum effect. For other
physical systems, such as cold atoms [4] or trapped ions [5],
the non-Gaussian operations could be implemented using
additional anharmonic potentials, but multimode Gaussian
operations are hard to come by.

Quantum nonlinear operations for light can be obtained by
letting the system interact with individual atoms, ions [6,7],
or similar solid-state physical systems [8] and measuring
the discrete system afterwards. In this way, highly nonclas-
sical superposed coherent states were recently realized [9].
These quantum states possess strong nonlinear properties,
and they were not previously observed in the trapped ions
[7], the circuit cavity electrodynamics [10], and in the
optical continuous variables (CV) experiments with traveling
light [11,12]. However, of these systems, only the last one
currently allows implementation of deterministic Gaussian
operations and measurements [13–16], which are needed
for deterministic measurement-induced implementation of
high-order nonlinearities [17,18]. Considering that recently
single-photon detectors [3] were used to prepare states with
nonlinear properties at least approaching those of atomic
and solid-state systems [19], the toolbox of CV quantum
optics has everything it needs for tests of unitary nonlinear
dynamics. Please note, there is a difference between the
CV quantum optics and its discrete counterpart, relying on
encoding qubits into individual photons [20,21]. In both, the
desired nonlinearity can be obtained from measurements, and
highly nonlinear gates have indeed been implemented for
single photons [22]. However, the current level of technology
does not allow discrete quantum optics experiments to be truly

deterministic, as all measurements need to be performed in
coincidence basis.

In principle, to realize an arbitrary unitary operation of a
quantum harmonic oscillator, it is sufficient to have access
to the quantum cubic nonlinearity [1,23]. Cubic nonlinearity
is represented by a Hamiltonian Ĥ ∝ x̂3 [17], where x̂ =
(â + â†)/

√
2 is the position operator of the quantum harmonic

oscillator [â is the annihilation operator, and the momentum
operator is similarly defined as p̂ = (â − â†)/(i

√
2)]. As of

now, neither quantum cubic nonlinearity, nor quantum states
produced by it (cubic states), have been observed on any
experimental platform. Beginning from a ground state, even
the weak cubic interaction generates highly nonclassical states
[24]. However, the nonclassicality of these states lies in the
superposition of |1〉 and |3〉 (|1&3〉 for shorthand), and it
is unfortunately masked by the superposition of |1&3〉 with
the dominant ground state |0〉 [18], especially considering its
fragility with regard to damping of the oscillator. It is therefore
challenging not only to generate and detect these states, but
also to understand and verify their nonclassical features.

A nonlinear gate can be deterministically implemented by
coupling a specifically prepared ancillary state to the unknown
target via the Gaussian quantum nondemolition coupling.
The ancilla is then measured and the obtained value q is
used to drive nonlinear feed forward in the form of pair of
displacements proportional to q and q2 performed on the
target state. See Ref. [18] for more details. This approach was
initially discussed in [17,24,25] with the ideal state, which is
currently experimentally unfeasible. To remedy this issue, an
approximative weak cubic state, described as a superposition
of Fock states |0〉, |1〉, and |3〉, was recently proposed [18]. In
this paper we present the experimental, completely heralded
preparation of this state together with analysis of its nontrivial
nonclassical properties.

II. CUBIC STATE

The ideal cubic state, which can be used as a resource for
the nonlinear cubic gate, can be expressed as

∫
e−iχ0x̂

3 |x〉 dx.
Note that normalization factors are omitted in this paper
unless otherwise noted. The cubic state can be obtained by
applying cubic nonlinear interaction Û (χ0) = exp(−iχ0x̂

3) to
an infinitely squeezed state. Due to general inaccessibility of
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a cubic nonlinear operation, any physical realization of the
state needs to be some kind of approximation. For weak cubic
nonlinearity and finite energy, the state can be approximated
by Ŝ(−r)(1 − iχx̂3)|0〉 [18]. Here, the cubic nonlinearity χ

is given by χ = χ0e
3r , and Ŝ(−r) = exp[−(ir/2)(x̂p̂ + p̂x̂)]

is a squeezing operation, a Gaussian operation, which can
be considered feasible and highly accessible in contemporary
experimental practice [13–16]. The squeezing operation does
not affect the cubic behavior of the state and therefore can be
omitted in our first attempts to implement the cubic operation.
The approximative weak cubic state can be then expressed in
the Fock space as

|ψid〉 = (1 − iχx̂3)|0〉 = |0〉 − i
χ

√
15

2
√

2
|1&3〉, (1)

where |1&3〉 = (
√

3|1〉 + √
2|3〉)/√5. It is a specific superpo-

sition of zero, one, and three photons, but it can also be viewed
as a superposition of vacuum |0〉 with a state |1&3〉, which
in itself is an approximation of odd superposition of coherent
states. The vacuum contribution results from the first term of
the unitary evolution Û (χ ) ≈ 1 − iχx̂3. It is an important term
for the function of the deterministic cubic phase gate, but at
the same time it masks the nonclassical features of the state
|1&3〉.

The cubic state (1) is generated by means of the setup
depicted in Fig. 1. The nondegenerate optical parametric
oscillator (NOPO) generates an entangled two-mode squeezed
state

∑∞
n=0 λn|n〉i|n〉s. The idler mode i is then split into three

by a pair of beamsplitters, after which the states of the three
modes are displaced in a phase space by amplitudes α =
1.55λei90◦

, β = 1.19λei311◦
, and γ = 1.19λei229◦

. Finally,
each of the modes impinges on the avalanche photodiode
(APD). Simultaneous detection of a photon by the three
detectors then heralds approximative preparation of the signal

FIG. 1. (Color online) Experimental setup. NOPO, nondegener-
ate optical parametric oscillator; SC, split cavity; FC, filter cavity; HD,
homodyne detector; APD, avalanche photodiode; HWP, half-wave
plate; PBS, polarization beamsplitter; PZT, piezoelectric transducer.

mode s in the state

3∑

n=0

λn[〈1,1,1|i12D̂1(α)D̂2(β)D̂i(γ )Û 12
BSÛ

1i
BS|n,0,0〉i12]|n〉s,

(2)

where D̂k(.) represents the displacement operation on mode k,
Û kl

BS represents the beamsplitter between modes k and l, and
subscripts 1 and 2 describe the ancillary modes. For the suitable
choice of λ, this state turns into the required superposition (1).
Please note that the state is prepared from the higher Fock
number contributions of a single two-mode state, and not from
several single photons as in [26]. In this sense it is actually more
reminiscent of the proposal relying on repeated combinations
of displacements and photon subtractions performed on a
single-mode squeezed light [27]. As a consequence, the
photons forming the state are indistinguishable. There are also
no problems with mode structure, because the heralded state is
measured by homodyne detection, the local oscillator of which
perfectly defines the measured mode. Any multimode effects,
arising, for example, from imperfect coincidence of the APDs,
therefore directly translate to reduction of the overall quality
of the produced state.

III. THE EXPERIMENT

The light source is a continuous-wave Ti:sapphire laser
of 860 nm. With around 20 mW of pump beam of 430 nm,
a two-mode squeezed vacuum is generated from a NOPO,
which contains a periodically poled KTiOPO4 crystal as an
optical nonlinear medium. The pump beam is generated by
second harmonic generation of the fundamental beam and
frequency-shifted with an acousto-optic modulator by around
600 MHz (equal to the free spectral range of NOPO, �ω).
As a result, photon pairs of frequency ω (signal) and ω + �ω

(idler) are obtained (ω corresponds to the frequency of the
fundamental beam). The output photons are spatially separated
by a split cavity whose free spectral range is 2�ω. The idler
beam passing through the split cavity is sent to two frequency
filtering cavities, and subsequently split into three equal-
intensity beams with beamsplitters. The state of each beam
is then displaced by a specific amplitude by interfering it with
a displacement beam at a mirror of 99% reflectivity. The phase
of the displacement is controlled by piezoelectric transducers,
and the amplitude of the displacement is controlled by rotating
half-wave plates followed by polarization beamsplitters. The
idler photons are detected by APDs. When APDs detect
photons, they output electronic pulses which are combined
into an AND circuit to get threefold coincidence clicks. The
signal beam is measured by homodyne detection with a local
oscillator beam of 10 mW. The homodyne current is sent to an
oscilloscope and stored every time coincident clicks happen.
The density matrix and Wigner function of the output state
are then numerically reconstructed from a set of measured
quadratures and phases of the local oscillator beam.

IV. ANALYSIS OF THE EXPERIMENTAL STATE

The reconstructed quantum state, both its density matrix
ρ̂exp and its Wigner function, is shown in in Fig. 2(a). The
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FIG. 2. (Color online) (a) Wigner function and density matrix of
the experimentally generated state. (b) Wigner function and density
matrix of the experimentally generated state after a single photon is
numerically subtracted from the data.

traditional approach to quantifying the quality of a prepared
state is by using the fidelity, F = 〈ψid|ρ̂|ψid〉. In our case,
the generated state has a maximal fidelity of FM = 0.90 with
the ideal state (1) with χ = 0.166. However, due to the weak
nonlinearity, the same state has fidelity F0 = 0.95 with the
vacuum state. This does not suggest that vacuum is a better
cubic state but rather that the fidelity is not a good figure of
merit in our case. In order to verify the state, we will therefore
need to analyze it more thoroughly and devise new methods.

We can start by confirming the presence of nontrivial super-
positions of photon numbers present in (1). The overwhelming
influence of vacuum can be removed by applying a virtual
single-photon subtraction ρ̂exp → ρ̂1sub = âexpâ

†/ Tr[âexpâ
†].

For the ideal resource state, (1 − iχx̂3)|0〉, this should result
in a superposition |0〉 + √

2|2〉, which is a state fairly similar
to an even superposition of coherent states and, as such, it
should possess several regions of negativity. Thus we can
convert the cubic state into a state with well-known properties,
which can be easily tested. Figure 2(b) shows the Wigner
function and the density matrix of the numerically photon-
subtracted experimental state. Notice that two distinctive
regions of negativity are indeed present. Moreover, apart from
considerations involving specific states, the areas of negativity
sufficiently indicate nonclassical behavior of the initial state,
as they would not appear if the state was only a mixture
of coherent states, which does not produce entanglement
when divided on a beamsplitter [28]. The probability of two
photons p′

2 = 0.29 is clearly dominating over p′
1 = 0.12 and

p′
3 = 0.03, where p′

i = 〈i|ρ̂1sub|i〉. To show now that Fock
states |0〉 and |2〉 appear in the superposition and not in
the mixture, we use the normalized off-diagonal element
for states basis |φ〉 and |ξ 〉, Rξ,φ(ρ̂) = |〈ξ |ρ̂|φ〉|2

〈ξ |ρ̂|ξ〉〈φ|ρ̂|φ〉 , which

characterizes the quality of any unbalanced superposition.
Since the subtraction preserves the superposition of Fock
states, R0,2(ρ̂1sub) = 0.24 after the subtraction proves the
presence of coherent superposition originating from the state
|1&3〉. In a similar way we can confirm that the three-photon
element is significantly dominant over the two- and four-
photon elements. Two virtual photon subtractions transform
the state ρ̂exp → ρ̂2sub = â2ρ̂expâ

†2/ Tr[â2ρ̂expâ
†2], where the

single-photon state is present with a probability of p′′
1 =

〈1|ρ̂2sub|1〉 = 0.68. In a generated single-photon state this
would be a sufficient confirmation that the state cannot be
emulated by a mixture of Gaussian states. In our case it is the
argument for the strong presence of the three-photon element.

Our analysis confirms presence of the highly nonclassical
superposition state |1&3〉, but we also need to demonstrate
that the state appears in a superposition with the vacuum state,
not just as a part of mixture. For this we look at the normalized
off-diagonal element R0,1&3(ρ̂exp) between the |0〉 and |1&3〉
for the original (not photon-subtracted) experimental state,
which would attain a value of one for the ideal pure state
and a value of zero for a complete mixture. In our case the
value is R0,1&3(ρ̂exp) = 0.50, so the superposition is present,
even if it is not perfectly visible due to the effects of noise.
More importantly, the element is significantly larger than
R0,1&3⊥ (ρ̂exp) = 0.11, where |1&3⊥〉 = (

√
2|1〉 − √

3|3〉)/√5
is orthogonal to |1&3〉. This shows that the desired and
theoretically expected superpositions are dominant.

V. DETECTING CUBIC NONLINEARITY

We have shown that the state contains the required superpo-
sitions, which is a strong argument about the true nature of the
state. However, there is also some measure of noise present. It
is a valid question, then, whether the state does indeed behave
as the cubic state despite the imperfections. The cubic state
should be able to drive, even at this elementary level, the cubic
gate. One way the cubic gate manifests is observable even
at a semiclassical level. For a given quantum state, the cubic
nonlinearity transforms the first quadrature moments x̂in and
p̂in according to 〈x̂out〉 = 〈x̂in〉, 〈p̂out〉 = 〈p̂in〉 + 3χ〈x̂2

in〉. The
first moment of x̂ should be preserved, while the first moment
of p̂ should become linearly dependent on the second moment
〈x̂2〉 = var(x) + 〈x̂〉2. Note that var(x) is a variance of x̂. If
we choose a set of input states with identical variances, there
should be observable quadratic dependence of the first moment
of p̂ on the first moment of x̂.

The easiest way the cubic gate can be implemented relies on
mixing the prepared ancilla with the target state on a balanced
beamsplitter, which is followed by projecting the ancilla onto
the quadrature eigenstate |x = 0〉 by homodyne detection. This
is the probabilistic version of the cubic gate [18] and it is
similar to using single photons to obtain a probabilistic map
[29]. As the set of target states, we will consider coherent
states |α〉, where 0 � α � 1, with first moments 〈x̂in〉 = √

2α

and 〈p̂in〉 = 0. The operation, imprinting nonlinearity from the
ancillary mixed state ρ̂A to the target state ρ̂in = |α〉〈α|, can
be realized by the map

ρ̂out = TrA[ÛBSρ̂in ⊗ ρ̂AÛ
†
BS|x = 0〉A〈x = 0|], (3)
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FIG. 3. (Color online) First moment of p for various coherent
states: ideal state with χ = 0.090 (dashed blue line), experimentally
generated state (dotted green line), and experimentally generated state
after the suitable displacement �p = −0.16 (solid red line).

where ÛBS is a unitary operator realizing transformation by a
balanced beamsplitter. This map fuses two states with wave
functions ψS(xS) and ψA(xA) into a state with wave function
ψS(xS/

√
2)ψA(xS/

√
2). The factor

√
2 only introduces linear

scaling of the measured data and has no influence on any
nonlinear properties. Since the imprinting operation uses
only Gaussian tools, any non-Gaussian nonlinearity of the
transformed state needs to originate in nonlinear properties
of the ancillary state ρ̂A. We have numerically simulated the
procedure, and the behavior of the first moment of quadrature
p̂ is plotted in Fig. 3. We can see that the dependence is
distinctively quadratic. This behavior is actually in a very
good match with that of the ideal cubic state (1) with χ =
0.090. They only differ by a constant displacement, which
has probably arisen due to experimental imperfections and
which can be easily compensated. This showcases our ability
to prepare a quantum state capable of imposing high-order
nonlinearity in a different quantum state.

We can also attempt to observe the cubic nonlinearity
directly, using the density matrix in coordinate representation.
In this picture, the continuous density matrix elements are
defined as ρ(x,x ′) = 〈x|ρ̂|x ′〉. The cubic nonlinearity is
best visible in the imaginary part of the main antidiagonal:
for the ideal state (1 − iχx̂3)|0〉〈0|(1 + iχx̂3), the density
matrix elements are Im[ρ(x, − x)] = 2χx3e−x2

and the cubic
nonlinearity is nicely visible. One problem in this picture
is that the cubic nonlinearity can be concealed by other
operations. The second-order nonlinearity does not manifest
in the imaginary part (not even order nonlinearities do), but
a simple displacement can conceal the desired behavior. On
the other hand, displacement can be quite straightforwardly
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FIG. 4. (Color online) Imaginary parts of the antidiagonal values
of coordinate density matrices for the ideal state with χ = 0.090
(dashed blue line), the experimentally generated state (dotted green
line), and the experimentally generated state after the suitable
displacement �p = −0.17 (solid red line).

compensated by performing a virtual operation on the data.
The comparison of the ideal state, the generated state, and
the displaced generated state can be seen in Fig. 4. We can
see that although the cubic nonlinearity is not immediately
apparent, the suitable displacement can effectively reveal it.
This nicely witnesses our ability to conditionally prepare a
quantum state equivalent to the outcome of the required higher-
order nonlinearity.

VI. SUMMARY AND OUTLOOK

In conclusion, we have generated a heralded nonclassical
non-Gaussian quantum state of light, which exhibits key
features of a state produced by unitary dynamics driven
by cubic quantum nonlinearity. Our experimental test has
demonstrated the feasibility of conditional optical preparation
of the ancillary resource state for the cubic measurement-
induced nonlinearity. Our analysis has contributed to general
understanding of quantum states produced by the higher-order
quantum nonlinearities. This understanding is a crucial step
towards physically implementing these nonlinearities as a part
of quantum information processing, and we expect information
regarding the first attempts in this direction to appear soon.
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[28] M. S. Kim, W. Son, V. Bužek, and P. L. Knight, Phys. Rev. A
65, 032323 (2002).

[29] F. Ferreyrol, N. Spagnolo, R. Blandino, M. Barbieri, and
R. Tualle-Brouri, Phys. Rev. A 86, 062327 (2012).

053816-5





Generating superposition of up-to three
photons for continuous variable
quantum information processing

Mitsuyoshi Yukawa,1 Kazunori Miyata,1 Takahiro Mizuta,1

Hidehiro Yonezawa,1 Petr Marek,2

Radim Filip,2 and Akira Furusawa1,∗

1Department of Applied Physics, School of Engineering, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
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Abstract: We develop an experimental scheme based on a continuous-
wave (cw) laser for generating arbitrary superpositions of photon number
states. In this experiment, we successfully generate superposition states
of zero to three photons, namely advanced versions of superpositions of
two and three coherent states. They are fully compatible with developed
quantum teleportation and measurement-based quantum operations with
cw lasers. Due to achieved high detection efficiency, we observe, without
any loss correction, multiple areas of negativity of Wigner function, which
confirm strongly nonclassical nature of the generated states.
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1. Introduction

Quantum information processing (QIP) has dramatically changed the way we view information.
By tying it firmly with physical systems, the bits and pieces of information ceased to be theo-
retical constructs and became bound by their carriers’ physical properties. In some areas this is
limiting [1], but in others it has shown new ways of tackling difficult computational tasks [2].
In order to utilize quantum states for QIP, one needs to be able to effectively manipulate them.
This is usually a daunting task, as any nontrivial manipulation tends to be accompanied by
decoherence which deteriorates the quantum information of the states. An effective method of
lessening the impact of decoherence employs the teleportation-based-QIP paradigm [3–5], in
which the on-line operation is carried out deterministically with a help of a specifically pre-
pared ancillary resource state, simple operations, measurement, and feedforward. In this way,
the task of performing a universal quantum operation is translated to the task of generating a
specific quantum state. This is usually much less of an issue, especially since the state can be,
in principle, prepared by probabilistic means and then stored until it is needed.

In continuous variables (CV) quantum information processing, the currently readily avail-
able Gaussian operations [5, 6] allow us to straightforwardly prepare any Gaussian state - a
state which can be described solely by Gaussian functions. However, in order to move out of
this subset, a non-Gaussian operation is required. While none is available, which is determinis-
tic, there is a probabilistic one, which has become a staple of CV quantum optics experiments.
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Single-photon detection, which can be physically implemented with help of single-photon on-
off detectors, conditionally induces the states with a strongly non-Gaussian behavior [7–9].
When a series of photon subtractions (or, alternatively, additions) is accompanied by suitable
displacements, it can be used to generate arbitrary superpositions of Fock states up to the num-
ber of subtractions used [10, 11]. Any finite energy quantum state can be, with any desired ac-
curacy, realized as a finite superposition of Fock states if all the required features are obtained.
This approach has been suggested for deterministic implementation of highly nonlinear weak
cubic quantum gate [12], which is a basic element of CV quantum information processing.

In the past, photon subtractions accompanied by displacements have been used to generate
superpositions of zero and one photon [13] and superpositions of up-to two photons [14]. These
experiments, however, were carried out with pulsed lasers and are therefore not compatible
with the current teleportation-based quantum operations [15–18]. This is because it is difficult
to apply measurement and feedforward to those generated states which have a bandwidth of
more than a few GHz. In this paper, we develop an experimental scheme using a continuous-
wave (cw) laser as a light source to generate arbitrary superposition states with a bandwidth of
10 MHz. In particular, we generate superposition states of up-to three photons. The generated
states are applicable to the current teleportation-based quantum operations [15–18], and thus
can be readily used to implement non-Gaussian gates. The generated states remarkably exhibit
multiple negative areas of Wigner function, which can be not only exploited as better resource
for CV quantum information processing [19], but also to completely characterize fundamental
decoherence process of nonclassical states [20] from point of view of evolving system and
environment.

The way the single-photon detections generate arbitrary superpositions of Fock states can be
easily understood by considering an initial two-mode squeezed vacuum, which can be experi-
mentally prepared by non-degenerate parametric process. It is expressed in the basis of photon
number states |n〉 as

|ψ〉s,i ∝ ∑
n

qn|n〉s|n〉i, (1)

where the characters s and i denote the signal and idler modes, respectively. The quantity q (0 ≤
q < 1) depends on the pump power and the nonlinear coefficient of the nonlinear crystal. Linear
optics is now used to split the idler mode into three, and to displace each of these modes i1,
i2, and i3 by coherent amplitudes β1, β2, and β3. The idler modes are then measured by single-
photon detectors and when the three-fold coincidence occurs, the signal mode is projected into
the desired superposition state. In the limit of small pump power and small displacements, we
can represent the projection process by

|ψ〉s ∝ 〈0|i
(

a√
3

+β1

)(
a√
3

+β2

)(
a√
3

+β3

)
|ψ〉s,i, (2)

where a is an annihilation operator acting on the idler mode, which represents the single-photon
detection. The factor 1√

3
arises from the splitting of the initial idler mode into the three sepa-

rately measured modes. The output state then looks as

|ψ〉s ∝ β1β2β3|0〉s +
q√
3
(β1β2 +β2β3 +β3β1)|1〉s

+

√
2

3
q2(β1 +β2 +β3)|2〉s +

√
2

3
q3|3〉s.

(3)

We can see that generating arbitrary superpositions of Fock states from zero to three is only a
matter of finding suitable values of the three displacement amplitudes. Similarly, with higher
number of single-photon detectors, a superposition of higher Fock states would be viable.
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Fig. 1. Schematic of the experiment. The output of HD is recorded by a digital oscilloscope
when a trigger is obtained. Triggers are obtained from an AND circuit when all of three
APDs have clicks simultaneously. NOPO, non-degenerate optical parametric oscillator;
SC, split cavity; FC, filter cavity; HD, homodyne detector; APD, avalanche photo diode;
HBS, half beamsplitter; HWP, half-wave plate; PBS, polarization beamsplitter; PZT, piezo
electric transducer.

2. Experimental setup

A schematic of the experiment is shown in Fig. 1. The light source is a cw Ti:Sapphire laser
of 860 nm. In order to generate a two-mode squeezed vacuum, around 20 mW of pump beam
of 430 nm is injected into a non-degenerate optical parametric oscillator (NOPO), which con-
tains a periodically-poled KTiOPO4 crystal as an optical nonlinear crystal. The pump beam
is generated by second harmonic generation of the fundamental beam, and frequency-shifted
with an acousto-optic modulator by around 600 MHz (equal to free spectral range of NOPO,
Δω). As a result, photon pairs of frequency ω (signal) and ω + Δω (idler) are obtained. The
output photons are spatially separated by a split cavity whose free spectral range is 2Δω . The
photons of frequency ω + Δω passing through the split cavity are sent to two frequency fil-
tering cavities [21], and are split into three beams with beamsplitters. Each beam is interfered
with displacement beams at mirrors of 99% reflectivity. Phase of displacement is controlled by
piezo electric transducers, and amplitude of displacement is controlled by rotating half-wave
plates followed by polarization beamsplitters. The idler beams are coupled to optical fibers to
be sent to avalanche photo diodes (APDs, Perkin-Elmer, SPCM-AQRH-14 and SPCM-AQRH-
16). The APDs output electronic pulses when they detect photons. The outputs are combined
into an AND circuit to get three-fold coincidence clicks.

The signal beam is measured by homodyne detection with local oscillator beam of 10 mW.
The homodyne current is sent to an oscilloscope and stored on every coincidence click. The
density matrix and Wigner function of the output state are numerically reconstructed from a set
of measured quadratures and phases of the local oscillator beam [22,23].

The presented experimental setup is capable of generating arbitrary superpositions of up-to
three photons, simply by choosing a proper array of displacement parameters. To showcase this
ability, we have generated a trio of quantum states, each of them strongly dependent on its three
photon component.
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3. Results and discussions

Fig. 2. The experimentally reconstructed density matrices and Wigner functions (h̄ = 1). (a)
Three photon state, (b) coherent state superposition, (c) superposition of zero- and three-
photon state with s = 0.86q. The small insets of Wigner functions of the ideal states are
shown for comparison.

At first, we generate the key resource, the three photon Fock state |3〉, which can be obtained
without using any displacements. The defining features of this state are the distinctive presence
of the three photon component, and the distinctive lack of presence of higher photon numbers.
The density matrix reconstructed from 5000 data points is shown in Fig. 2(a) and it exhibits both
the features mentioned. The three photon element ρ33 = 0.33 plays a significant role and the
whole state is fairly well contained in the three photon subspace, with higher photon numbers
populated only in 10 percent of the cases. Note that ρ33 is equal to the fidelity of the state, which
is defined as the overlap F = 〈ψ|ρexp|ψ〉 of the experimentally generated state ρexp with the
ideal state |ψ〉. The two photon and one photon contributions are caused by the experimental
imperfections, such as optical losses and dark counts of the photon detectors, while the presence
of higher photon numbers is caused by the strong pump power, which needed to be large enough
to allow for a sufficient count rate (20 counts per minute). Despite the imperfections, the Wigner
function of the three photon state, also shown in Fig. 2(a), displays all the features one would
expect from the three photon Fock state: it is spherically symmetrical and along any cut in the
phase space it exhibits three distinctive regions of negativity.

The second generated state is the superposition of Fock states |1〉 and |3〉, which is achieved
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by using displacements β1 = −β2 =
√

2q and β3 = 0. For suitably selected parameters, this
state is a good approximation of the coherent state superposition |CSS〉 ∝ |α〉− |− α〉, which
can play a very important role in quantum information processing [19]. To be of use, the coher-
ent state superposition needs to have a large enough amplitude. This comes with a very distinct
feature: the wave function of a coherent state superposition has an infinite number of intersec-
tions with the horizontal axis. This has a consequence for the state’s Wigner function - as the
amplitudes of the coherent states grow, the number of regions of negativity should increase as
well. In the past, approximations of odd superpositions of coherent states for travelling field of
light were generated by squeezing a single photon (or by subtracting a photon from a squeezed
state) [18,21,24,25]. However, the states generated by this approach always have only a single
region of negativity, no matter their apparent amplitude, which severely limits their potential
applications. In order to obtain more regions of negativity and, consequently, more faithful
approximations of coherent states superposition with higher amplitudes, one should employ
higher photon numbers during the generation.

By doing exactly that, we have generated a state which is a good superposition of coher-
ent state superposition with α = 1.3. The fidelity with the ideal coherent state superposition
was found to be F = 0.6. However, the state is actually a squeezed coherent state superposi-
tion - subsequent antisqueezing could increase the amplitude to α = 1.6 while simultaneously
increasing the state fidelity to F = 0.61. In this sense, what was actually generated was the
non-Gaussian keystone for a larger coherent state superposition [26,27]. Its density matrix and
Wigner function, reconstructed from 10000 data points, can be seen in Fig. 2(b). The count rate
is around 100 counts per minute. The three photon nature of the generated state is manifest in
presence of three regions of negativity, which is exactly the number one would expect from a
coherent state superposition with amplitude α = 1.6. The presence of elements corresponding
to Fock states 0 and 2 is again caused by losses at various stages of the experiment. By obtain-
ing the multiple areas of negativity resulting from higher interference effects of the coherent
states, we have reached a quality of state preparation previously obtained only for field in a
cavity [20, 28].

The third generated state is the superposition of Fock states |0〉 and |3〉, which needs three

different displacements during the state preparation stage, β1 = sei π
6 , β2 = sei 5π

6 and β3 = sei 3π
2 ,

where s is the displacement amplitude. Such the state is a good approximation of a different kind
of coherent state superposition - |α〉+ |αei 2π

3 〉+ |αe−i 2π
3 〉, which can be seen as a sample qutrit

state encoded in the coherent state basis. This coherent state basis is orthogonal in the limit of
large α , but similarly to the coherent state qubit basis, there is also a completely orthogonal
basis formed of superpositions of Fock states invariant to 2π/3 phase space rotation: |0〉 +
α3√

6
|3〉+ · · · , |1〉+ α3

2
√

6
|4〉+ · · · , and |2〉+ α

2
√

15
|5〉+ · · · . We have succeeded in generating the

first of these basis states and the density matrix, reconstructed from 4000 data points, together
with the Wigner function are shown in Fig. 2(c). The count rate is 50 counts per minute. We can
see that the state is strongly nonclassical, with three areas of negativity, and that it possesses
distinctive rotational 2π/3 symmetry, which is exactly as predicted by the theory. The fidelity
with the ideal state is F = 0.61. Recently, an alternative procedure of similar state preparation
for a field stored in a cavity has been suggested [29].

In all the presented results, there are minor contributions of photon number elements not
agreeing with the idealistic expectations. Contributions of Fock states 4 and higher are generally
caused by strong pumping, which was necessary in order to achieve a sufficient count rate.
Undesirable photon number elements of less than three photons are caused by optical losses
and dark counts of photon detectors. It should be pointed out, though, that all the states were
reconstructed on a six dimensional Hilbert space without any loss correction. This is in stark
contrast to previous work focused at generating superpositions of photon number states up to
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two [14], where correction of 45% loss was required to counteract low quantum efficiency of
the detection. In our case, the high interference visibility of homodyne detection (97%) and
high quantum efficiency of photo diodes (99%) add to the overall quantum efficiency for the
whole experimental setup of 78%. Consequently, the states could be reconstructed without loss
correction and they are therefore suitable for use as ancillae in teleportation-based quantum
operations in advanced CV quantum information processing.

4. Conclusion

We have constructed an experimental setup based on a cw laser, which is capable of gener-
ating superpositions of Fock states up to three. Since we used a cw laser as a light source,
the generated states are compatible with teleportation-based CV quantum information process-
ing [15–18]. We have tested the experimental setup by generating three characteristic states - the
three photon Fock state to demonstrate the three-photon capability, and two superpositions to
show that the nonclassical behavior can be also realized in a superposition. We have observed
strong nonclassical features, manifesting in multiple areas of negativity, which were in good
agreement with theoretical expectations, even without using any form of loss correction. This
was made possible by high quantum efficiency of the experimental setup, which is indispens-
able for use in teleportation-based QIP. The scheme can also allow us to observe fundamental
aspects of quantum decoherence of highly nonclassical states [20], giving us access to both the
evolving system and the environment. The experimental setup is not limited just to the prepara-
tion of the three states - arbitrary superpositions of Fock states of up-to three can be generated
by using suitable array of displacements. This, in combination with high quantum efficiency
of the setup and the cw platform ready for integration with an array of CV gates, makes this
scheme a strong tool in the future CV non-Gaussian quantum information processing.

Acknowledgments

This work was partly supported by PDIS, GIA, G-COE, APSA, and FIRST commissioned by
the MEXT of Japan, and ASCR-JSPS. R.F. acknowledges support of P205/12/0577 of Czech
Science Foundation. P.M. acknowledges support of P205/10/P319 of GACR.

#184058 - $15.00 USD Received 23 Jan 2013; revised 21 Feb 2013; accepted 21 Feb 2013; published 27 Feb 2013
(C) 2013 OSA 11 March 2013 / Vol. 21,  No. 5 / OPTICS EXPRESS  5535





PHYSICAL REVIEW A 93, 022301 (2016)

Implementation of a quantum cubic gate by an adaptive non-Gaussian measurement
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We present a concept of non-Gaussian measurement composed of a non-Gaussian ancillary state, linear optics,
and adaptive heterodyne measurement, and on the basis of this we also propose a simple scheme of implementing
a quantum cubic gate on a traveling light beam. In analysis of the cubic gate in the Heisenberg representation,
we find that nonlinearity of the gate is independent from nonclassicality; the nonlinearity is generated solely by
a classical nonlinear adaptive control in a measurement-and-feedforward process, while the nonclassicality is
attached by the non-Gaussian ancilla that suppresses excess noise in the output. By exploiting the noise term as
a figure of merit, we consider the optimum non-Gaussian ancilla that can be prepared within reach of current
technologies and discuss performance of the gate. It is a crucial step towards experimental implementation of the
quantum cubic gate.

DOI: 10.1103/PhysRevA.93.022301

I. INTRODUCTION

Development and application of quantum physics crucially
rely on progress in quantum operations with various physical
systems. For discrete-variable systems, a basic controlled-
NOT nonlinear gate [1] has been already demonstrated with
many systems [2–5] and the current problem is scalability of
their implementations. On the other hand, for more complex
continuous-variable (CV) systems [6], a full set of basic
operations has not been closed yet. It was proven that in order
to synthesize an arbitrary unitary operation, it is enough to add
a cubic nonlinear operation to the already existing Gaussian
operations [7]. Any nonlinearity can be principally obtained
from a chain of the Gaussian operations, the cubic nonlinearity,
and feedforward corrections [7,8]. The cubic nonlinearity is
therefore a bottleneck of CV quantum physics.

Already a decade ago, Gottesman, Kitaev, and Preskill
(GKP) suggested a way to implement a cubic nonlinear
gate based on Gaussian operations, Gaussian measurement,
quadratic feedforward correction, and an ancillary cubic state
produced by the cubic nonlinearity [9]. Various approaches
towards the cubic gate have followed [10–13]. Particularly in
the field of quantum optics, most of the components of the
cubic gate have been experimentally demonstrated, mainly
because of the high quality of generating squeezed states
and efficient homodyne detection. The Gaussian operations
have been already mastered [14–16], utilizing a concept of
measurement-induced operations [17]. Furthermore, they have
been tested on non-Gaussian states of light [18] to prove their
general applicability. Recently, the quadratic electro-optical
feedforward control has been demonstrated [19]. In addition,
to independently obtain the cubic state, a finite dimensional ap-
proximation of the cubic state has been suggested [20] and its
performance in the GKP scheme has been discussed. The cubic

*miyata@alice.t.u-tokyo.ac.jp
†akiraf@ap.t.u-tokyo.ac.jp

state has been experimentally generated as a superposition of
photons and verified [21]. Potentially, such a superposition
state can be stored in and retrieved from recently developed
optical quantum memories [22,23]. In order to make resource
nonclassical states compatible with the measurement-based
scheme, real-time quadrature measurement of a single-photon
state has been demonstrated [24].

A drawback of the original GKP idea is that it requires
to implement the quantum nondemolition gate, i.e., the CV
controlled-NOT gate [17], and a squeezing feedforward that
depends on the measurement result. While each of them has
been already demonstrated [15,19], the total implementation
to build a unitary cubic operation demands three squeezed
states as well as one non-Gaussian ancilla and is probably not
the simplest arrangement. In contrast, we here use adaptability
of linear optical schemes and propose a better and simpler
topology with linear optics and suitable ancillary states.

Our approach is to tuck all the non-Gaussian aspects into the
measurement process. The topology will be then similar to the
simple one used for a measurement-induced squeezing gate
[14,17–19,25]. Non-Gaussian operations can be realized by
simply substituting a measurement of nonlinear combination
of quadrature amplitudes for the Gaussian homodyne mea-
surement [26,27]. We construct such a measurement in a form
of a generalized non-Gaussian measurement by combining
ordinary Gaussian measurement tools with non-Gaussian
ancillary states that can be prepared with photon detection. In
fact, we can exploit arbitrary superpositions of photon-number
states up to certain photon level within reach of current
technologies [21,28,29].

In this paper, we first provide an idea of non-Gaussian
measurement comprising a non-Gaussian ancillary state, linear
optics, and adaptive heterodyne measurement. Using the non-
Gaussian measurement, we next propose a simple schematic
of a quantum cubic gate based on the measurement-induced
operation scheme, whose resource states are only one squeezed
vacuum and one non-Gaussian state. While in previous work
the input-output relation of the cubic gate has been investigated
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in the Schrödinger picture, here we analyze the gate in the
Heisenberg picture to include imperfections in the scheme.
We then find that nonlinearity of the gate is independent
from nonclassicality. Specifically, the nonlinearity is gen-
erated solely by a classical nonlinear adaptive control in
a measurement-and-feedforward process regardless of the
non-Gaussian ancilla. On the other hand, the nonclassicality is
attached by the ancilla that compensates residual noise in the
output. Finally, we discuss an overall performance of the cubic
gate in such a topology and consider non-Gaussian ancillary
superposition states up to a certain photon level to investigate
how well the unwanted noise can be suppressed in the gate.

II. MINIMAL IMPLEMENTATION OF
MEASUREMENT-INDUCED QUANTUM OPERATIONS

A measurement-induced quantum operation scheme [17]
decomposes various quadratic operations into linear optics,
displacement operation, homodyne detection, and offline
squeezed light beams, which are readily available in actual
optical experiments. One of the realizations of the scheme is
the basic squeezing gate. First we combine an input state |ψ〉
and an eigenstate |x = 0〉 of the position quadrature x̂ at a
beam splitter whose transmittance is represented by

√
T . We

then measure the momentum quadrature p̂ of one of the optical
modes and obtain a value y. Finally, we apply displacement to
the p quadrature of the remaining mode with the value pdisp =√

(1 − T )/T y and obtain a squeezed output state. Ideally the
output is a pure state Ŝ|ψ〉, where Ŝ is an x-squeezing operator
defined as Ŝ†x̂Ŝ = √

T x̂ and Ŝ†p̂Ŝ = p̂/
√

T . In the case of
implementing p squeezing, it is enough to replace the ancillary
x eigenstate with the p eigenstate |p = 0〉 and exchange the
roles of x and p quadratures. This type of operation has
been successfully demonstrated in [14,18], where the position
eigenstate is replaced with the squeezed vacuum.

On the basis of one-way CV cluster computation [26,27],
we can generalize the basic squeezing gate to minimal single-
mode implementation of arbitrary-order quantum operations
as shown in Fig. 1. The homodyne detector in the squeezing
gate is now replaced with a detector that measures a general
quadrature Û

†
n(x̂)p̂Ûn(x̂), where the unitary operator Ûn(x̂)

is defined as nth-order phase gate Ûn(x̂) = exp(iγ x̂n) with a
real parameter γ . Hereafter we set � = 1 for simplicity. The
measured general quadrature is thus p̂ + nγ x̂n−1. In the ideal

FIG. 1. Minimal single-mode implementation of measurement-
induced quantum operation.

case, the output state is expressed as ŜÛn(
√

1 − T x̂)|ψ〉. This
gate deterministically applies the phase gate to the input state
with the additional constant squeezing that can be compensated
by another squeezer.

It is known that an arbitrary single-mode unitary can be
decomposed into the set of gates Ûn(x̂) for n = 1,2,3 for all
γ ∈ R, together with the π/2 phase shift [8,27]. This also
holds when we exploit the minimal implementation in Fig. 1.
Û1(x̂) is the trivial displacement operation, and Û2(x̂) has
been experimentally demonstrated [19,25]. The remained task
is thus to realize a cubic gate Û3(x̂). We now consider how to
construct measurement of the nonlinear quadrature p̂ + 3γ x̂2

with affordable apparatuses, as explained in the following
sections.

III. NON-GAUSSIAN MEASUREMENT BY GENERALIZED
HETERODYNE DETECTION

A. Projecting on pure states

In quantum physics, measurements are represented by
operators. In the simplest case of von Neumann measurements,
these operators are simply projectors on particular quantum
states. In the case of the keystone measurement of CV
quantum optics, the homodyne detection, each measurement
result indicates that the measured state was projected on an
eigenstate of the measured quadrature operator. Analogously,
the heterodyne detection, which can be modeled by a pair
of homodyne detectors simultaneously measuring conjugate
quadratures of a mode split by a balanced beam splitter
[30], implements a projection onto a coherent state. Both
of these kinds of measurements are Gaussian—the measured
quadrature distribution is Gaussian if the measured state is
Gaussian.

One way to achieve a non-Gaussian measurement is to
take advantage of non-Gaussian states in combination with
the standard heterodyne detection schemes. The basic idea
of the measurement is best explained in the x representation.
Consider that we have a standard heterodyne detection config-
uration, where the idle port of the beam splitter is not injected
by a vacuum but by a specifically prepared ancillary state
|ψA〉 = ∫

ψA(x)|x〉dx. For a particular pair of measurement
results q and y, the procedure implements projection onto a
state

D̂(
√

2q + i
√

2y)T̂ |ψA〉. (1)

Here D̂(α) = exp{i√2x̂ Im[α] − i
√

2p̂ Re[α]} stands for the
displacement operator and T̂ is the time-reversal antiunitary
operator represented by T̂ †x̂T̂ = x̂ and T̂ †p̂T̂ = −p̂. To
derive the expression (1), we can start with the projection
states of the pair of homodyne detectors

〈x1 = q|〈p2 = y|. (2)

If we take into account the unitary balanced beam splitter, the
projection state becomes∫

dx2

〈
q + x2√

2

∣∣∣∣
〈−q + x2√

2

∣∣∣∣e−iyx2 . (3)

During the measurement, this state will be jointly projected
onto the measured and the ancillary state. The measured state
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is unknown, but we can already apply the ancilla in the second
mode. This reduces the state to∫

dx

〈
q + x√

2

∣∣∣∣ψA

(−q + x√
2

)
e−iyx, (4)

where the subscript was dropped because it was no longer
needed. After a straightforward substitution we can express
the projection state as∫

dxψ∗
A(x)ei

√
2xy |x +

√
2q〉. (5)

Since the time-reversal operator corresponds to complex
conjugate in the x representation, the expression (5) is the
same as Eq. (1). For q = y = 0, we obtain simple projection
onto the given ancillary state

∫
ψ∗(x)|x〉dx. We can see that

if the ancillary mode is in the vacuum or a coherent state, the
measurement remains the simple heterodyne detection, as is
expected. However, if the ancilla is non-Gaussian, we obtain
a truly non-Gaussian measurement.

B. Projecting on impure states

In a realistic scenario, the ancillary state will be generally
not pure. To take this into account, it is best to abandon the x

representation and employ the formalism of Wigner functions.
The basic premise, however, remains. The measurement still
implements projection onto a specific state, only this time the
state will be represented by a Wigner function. Specifically,
for a signal two-mode state represented by a Wigner function
WS(x0,p0,x1,p1), the outcome of a measurement performed
on mode 1 yielding a pair of values q and y results in the
Wigner function

Wout(x0,p0|q,y)

∝
∫

dx1dp1WS(x0,p0,x1,p1)WM(x1,p1|q,y), (6)

where the function WM(x1,p1|q,y) represents the projector
on the particular state. In our scenario, in which the pair
of homodyne detectors are supplied with an ancillary state
corresponding to a Wigner function WA(x,p), the projector
function can be found as

WM(x,p|q,y) = 2WA(x −
√

2q, − p +
√

2y). (7)

We can see that this form agrees with Eq. (1) if we realize that
the time-reversal operator T̂ transforms the Wigner function
variables as (x,p) �→ (x, − p). The relation (7) can be derived
in the same way as relation (1). We start with the homodyne
measurement projector functions, here represented by the pair
of δ functions δ(x1 − q)δ(p2 − y), which we then propagate
through the beam splitter and apply to the ancillary state,
resulting in

WM(x1,p1|q,y) =
∫

dx2dp2WA(x2,p2)δ

(
x1 − x2√

2
− q

)

× δ

(
p1 + p2√

2
− y

)
. (8)

C. Arbitrary Gaussian operations within the measurement

One may desire to apply Gaussian operation to the non-
Gaussian ancilla because some Gaussian operations (such as
squeezing) enhance certain features of the state. Here we show
that, instead of projecting on a raw non-Gaussian state, we
can alter the measurement so it projects on a non-Gaussian
state altered by an arbitrary Gaussian operation. This can be
enormously useful because we do not need to implement an
additional Hamiltonian that often makes the state impure in
actual experiments. Note that we are disregarding displace-
ment because that can be achieved simply by displacing
the measurement results. For a pair of quadrature variables
x and p, an arbitrary Gaussian operation is represented
by a real two-by-two symplectic matrix S whose elements
satisfy s11s22 − s12s21 = 1. If we consider that phase shift
can be implemented “for free,” the arbitrary Gaussian unitary
transformation reduces to

x ′ = z1x, p′ = 1

z1
p + z2x, (9)

where z1 and z2 are arbitrary real parameters. To achieve this
transformation, we must modify the measurement setup in
two ways. First, the balanced beam splitter in Eq. (3) will be
removed and replaced by a beam splitter with transmittance
T and reflectance R = 1 − T . Second, instead of measuring
quadrature p2 we measure quadrature p2(θ ) = p2 cos θ +
x2 sin θ . The projection functions of the measurements them-
selves in Eq. (8) are then

δ(x1 − q)δ(p2 cos θ + x2 sin θ − y). (10)

Using the same steps we used to arrive at Eq. (7) we can now
obtain the generalized projection function

WM(x,p|q,y) = 1

|√RT cos θ |WA

(√
T

R
x − q√

R
, −

√
R

T
p

− tan θ√
RT

x + q tan θ√
R

+ y√
T cos θ

)
. (11)

We can immediately see that after the time-reversal operations,
we have z1 = √

T/R and z2 = tan θ/
√

RT and these two
parameters can attain arbitrary real values. As a consequence,
after addition of a phase shift the function (11) implements
projection onto the ancillary state altered by an arbitrary
Gaussian operation.

It is worth pointing out that the two homodyne measure-
ments need not be independent. One of the measurements can
have parameters changing based on the results of the other
one, thus creating a sort of adaptive measurement scheme.
For example, the measurement phase θ can depend on the
measurement result q. This can be used to induce a nonlinear
behavior, as we see in Sec. IV B.

IV. IMPLEMENTATION OF A CUBIC GATE

A. With nonadaptive non-Gaussian measurement

In this section we apply the non-Gaussian measurement to
a particular task: the implementation of a nonlinear cubic gate
Û = eiγ x̂3

to an arbitrary quantum state. In terms of quadrature
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operators, the gate performs transformation

x̂ ′ = x̂, p̂′ = p̂ + 3γ x̂2. (12)

Before proceeding to a scheme with the adaptive heterodyne
measurement, we first consider implementation with nonadap-
tive measurement expressed by Eq. (1).

The basic principle of the operation can be quickly
explained in the x representation. The unknown input state |ψ〉
is mixed with a squeezed state on a balanced beam splitter. If
we for ease of explanation consider the infinite squeezing, the
resulting two-mode state can be expressed as

∫
dxψ(x)

∣∣∣∣ x√
2

〉∣∣∣∣ x√
2

〉
. (13)

After applying non-Gaussian measurement (4) on one of the
modes, we obtain the projected state in the form

∫
dxψA

(
x√
2

−
√

2q

)
ψ(x)e−ixy

∣∣∣∣ x√
2

〉
, (14)

where q and y are again the homodyne measurement results
and ψA(x) is the wave function of the ancillary state. For
implementing the cubic gate, ψA(x) has to be cubically
dependent on x and is ideally in a state

|ψA〉 =
∫

dx exp(iγ x3)|x〉 (15)

and the whole operation would lead to

exp(−i3
√

2γ qx̂2) exp[i(6γ q2 −
√

2y)x̂] exp(iγ x̂3)

×
∫

dxψ(x)

∣∣∣∣ x√
2

〉
. (16)

This is almost exactly the desired output state. The only
difference is a constant squeezing and two unitary operations
depending on the measured values. The constant squeezing
can be fully compensated either before or after the opera-
tion and the measurement-dependent unitary operations can
be removed by a proper feedforward. This is exactly the
same principle as employed by the CV teleportation and
CV measurement-induced operations. While each particular
measurement result projects on a different quantum state, these
states belong to the same family and the proper operation can
smear the differences and produce a quantum state independent
of the measurement result. This allows the whole procedure to
operate deterministically.

B. With adaptive non-Gaussian measurement

In Eq. (16) we need quadratic feedforward in the form
of adjustable squeezing. Thus, the topology here is not as
simple as the minimal implementation depicted in Fig. 1. To
realize measurement of the nonlinear quadrature p̂ + 3γ x̂2, we
exploit the adaptive non-Gaussian heterodyne measurement.
According to the results in Sec. III C, by altering the phase of
the second measurement, we can project onto a transformed

FIG. 2. Schematic of a cubic gate. BBS, balanced beam splitter;
HOM, homodyne measurement; LO, local oscillator; PS, phase shift;
NL, nonlinear classical calculation. While all the optics are linear,
the classical circuit involves nonlinear calculations that makes the
feedforward nonlinear. The nonlinear classical circuits have been
already devised in the experiment of dynamic squeezing [19].

ancillary state,

D̂

[√
2q + i

( √
2y

cos θ
−

√
2q tan θ

)]
T̂ eix̂2 tan θ |ψA〉. (17)

Again, q and y are the measured values in the heterodyne
detection, and |ψA〉 is the cubic state (15). We then substitute
3
√

2γ q for tan θ . After simple algebras we find the projection
state

exp(−iγ x̂3)

∣∣∣∣∣p =
√

2y

cos θ

〉
, (18)

which means an eigenstate of the nonlinear quadrature
p̂ + 3γ x̂2 with the eigenvalue

√
2y/ cos θ . This scheme can

be illustrated as Fig. 2. Here the quadrature basis of the
second homodyne detection is determined by the result of
the first homodyne detection. As a result, the heterodyne
detection and the classical calculation compose a module
of non-Gaussian measurement, and the feedforward is now
the simple displacement operation. After all, the required
optical operations are displacement and beam splitters together
with homodyne measurements, all of which are ubiquitous in
quantum-optical experiments.

To explicitly show how this scheme works, it is instructive
to employ the Heisenberg representation, which would have
the added benefit of incorporating the imperfections arising
from the realistic experimental implementation, e.g., finite
squeezing. Let the unknown signal mode be labeled by “0” and
described by quadrature operators x̂0 and p̂0. After combining
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the initial state in mode “0” with the squeezed state in mode “1”
and with the non-Gaussian ancilla in mode “2”, the respective
quadrature operators read

x̂ ′
0 = 1√

2
x̂0 − 1√

2
x̂1, (19a)

p̂′
0 = 1√

2
p̂0 − 1√

2
p̂1, (19b)

x̂ ′
1 = 1

2
x̂0 + 1

2
x̂1 − 1√

2
x̂2, (20a)

p̂′
1 = 1

2
p̂0 + 1

2
p̂1 − 1√

2
p̂2, (20b)

x̂ ′
2 = 1

2
x̂0 + 1

2
x̂1 + 1√

2
x̂2, (21a)

p̂′
2 = 1

2
p̂0 + 1

2
p̂1 + 1√

2
p̂2. (21b)

In the next step we measure the x quadrature of mode 1′
and obtain value q. We can now use the value to adjust the
measured phase of the second homodyne detector. In effect,
we end up measuring the value y of quadrature operator
x̂ ′

2 sin θ + p̂′
2 cos θ , where θ = arctan(3

√
2γ q). Note that,

since θ nonlinearly depends on q, which carries information
of x̂1 quadrature, we can interpret this type of measurement as
the origin of nonlinearity of the gate. The quadrature operators
of the output mode can be now expressed in terms of the
measured values as

x̂ ′
0 = 1√

2
x̂0 − 1√

2
x̂1, (22a)

p̂′
0 =

√
2p̂0 + p2 + 3γ

2
[(x̂0 + x̂1)2−2x̂2

2 ]−
√

2y

cos θ
. (22b)

The last term of the p quadrature, which is the only term
explicitly depending on the measured values q and y, can be
removed by a suitable displacement and we are then left with
the final form of the operators:

x̂ ′′
0 = 1√

2
x̂0 − 1√

2
x̂1, (23a)

p̂′′
0 =

√
2

(
p̂0 + 3γ

2
√

2
x̂2

0

)
+ (

p̂2 − 3γ x̂2
2

)

+ 3γ

(
x̂0x̂1 + 1

2
x̂2

1

)
. (23b)

Both of the first terms in Eq. (23) represent the ideal cubic
operation, i.e., combination of the cubic gate eiγ (x̂0/

√
2)3

and
the constant squeezing mentioned in Sec. II. Those terms do
not depend on the quadratures of the other ancillary states.
Differently from the output (16) in Sec. IV A, in the Heisenberg
representation we can say that the cubic nonlinearity comes
from the adaptive non-Gaussian measurement and feedforward
regardless of the ancillary states.

Naturally, the ancillary states are still required to complete
the operation since the outputs have residual terms. It is
straightforward to find the ideal ancillary state in mode 1 as the

quadrature eigenstate |x = 0〉1 because the state affects only
the last terms of Eq. (23) and they vanish when x̂1 → 0. In
experimental implementation, we approach the ideal state by
using squeezed vacuum states.

On the other hand, the middle term of Eq. (23b), p̂NLQ =
p̂2 − 3γ x̂2

2 , depends solely on the ancilla in mode 2. This term
vanishes when the ancilla is the ideal cubic state (15). This
state is best approached by considering physical states that
squeeze the nonlinear quadrature p̂NLQ, as discussed in the
next section.

V. OPTIMAL ANCILLARY STATE

To find suitable states in mode 2, we can use the expectation
value and the variance of the nonlinear quadrature p̂NLQ as
figures of merit, both of which should be approaching zero.
Here we consider preparing the ancillary state that can be
generated within reach of current technologies. On one hand,
arbitrary superpositions of photon-number states up to the
three-photon level |ψN=3〉 can be prepared [21,29], and the
photon-number limit can, in principle, be incremented. On
the other hand, we can perform universal Gaussian operation
ÛG onto any input state [14–16]. Then the ancilla best
suited for our purposes can be found in a form ÛG|ψN 〉 by
optimizing over all superposition states up to N -photon level
|ψN 〉 and all Gaussian operations ÛG that can be applied on
the state afterwards. In this way, we are using the expensive
non-Gaussian resources only for the key non-Gaussian features
of the state [31].

Our goal is to find a state ÛG|ψN 〉 that minimizes
the expectation value 〈p̂NLQ〉 and the variance V (p̂NLQ) =
〈(p̂NLQ − 〈p̂NLQ〉)2〉. The operator is symmetric with respect
to space inversion, x̂2 → −x̂2, and has a linear term of
p̂2. Accordingly the relevant Gaussian operations are the
p displacement represented by p̂2 → p̂2 + p0, and the x

squeezing represented by x̂2 → x̂2/λ and p̂2 → λp̂2, where
p0 and λ are arbitrary real parameters. Thus, the nonlinear
quadrature after suitable Gaussian operations is represented as

Û
†
Gp̂NLQÛG = γ 1/3

[
λ′p̂2 − 3

(
x̂2

λ′

)2
]

+ p0, (24)

where λ′ = λ/γ 1/3. From this point of view, we can see that
the expectation value 〈p̂NLQ〉 vanishes when we apply suitable
displacement p0. On the other hand, the variance V (p̂NLQ) can
be minimized by optimizing the state |ψN 〉 and the parameter
λ′. Furthermore, since λ′ can be any real number, we can say
that the optimum state does not depend on γ . We therefore
use the variance of λ′p̂2 − 3(x̂2/λ

′)2 as the actual figure of
merit to derive the optimum state |ψN 〉 and the corresponding
parameter λ′.

Let V
opt
N be the minimum value of the variance V (p̂NLQ)

with the optimum state |ψopt
N 〉 and the optimal parameter λ′opt.

Note that V
opt

0 represents the Gaussian limit, the minimum
variances when the state is optimized over all Gaussian
states. Then the relative noise V

opt
N /V

opt
0 , as shown in Fig. 3,

represents the ratio of the minimum noise to the Gaussian
limit and is independent from γ . We can see that the variance
decreases approaching zero with N and that even a state
obtained as a superposition of zero and one photon gives
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FIG. 3. Variances of the nonlinear quadrature with the optimized
photon-number-state superpositions up to N photons, normalized by
the Gaussian limit V

opt
0 . The parameter λ′ is optimized over to find

the minimum of the variance.

a substantial benefit over the Gaussian limit. To present the
optimized states, we represent the optimal approximate state
up to the N -photon level by |ψopt

N 〉 = ∑N
n=0 c

opt
n |n〉 and plot

absolute values of the coefficients in Fig. 4. The superposition
of vacuum and single-photon states is readily available today,
and generation of arbitrary superposition up to three photons
has been demonstrated [21,29]. In the case of optimizing
the superposition state up to three photons, the optimal

FIG. 4. Absolute values of the coefficients of the optimal finite
approximation of ancillary states for various upper bounds of photon
number N . Note that the coefficients of even-number photons are
real and odd-number photons imaginary, due to the symmetry of the
nonlinear quadrature p̂ − 3γ x̂2 with respect to x̂ → −x̂.

approximate state looks as∣∣ψopt
N=3

〉 ∝ 0.17|0〉 − 0.56i|1〉 − 0.73|2〉 + 0.35i|3〉. (25)

The state is different from the cubic state from [20] because
of the different derivation of the states. In [20], the state was
determined as if it was produced by applying the cubic gate to
the vacuum without considering optimization over squeezing
and displacement. On the other hand, the present state (25) is
derived so that its overall suitability as the ancilla is maximized
with suitable Gaussian operations. In either case, the state
can be prepared by the same experimental method [21,29].
Note that, although the method can be adopted to generate
the optimum superpositions up to arbitrary photon level,
it is difficult to generate large-photon-number superposition
states because the generation rate exponentially decays as
the maximum photon number increases. This difficulty is
expected to be remedied by exploiting a recently devised
all-optical memory [22], which enables us to improve the
generation rate and consequently to prepare superpositions
up to four- or larger-photon-number states. Another way in
the future could be to exploit quantum optomechanics with
nanoparticles, which has a clear potential to produce the cubic
states of mechanical oscillators in optical potential [32–34].
These mechanical states can be efficiently read out to another
light mode [35] and then used as the optical cubic states.

The cubic nature of the states is also nicely visible from
their Wigner functions as depicted in Fig. 5. For comparison,
we check the Wigner function of the ideal cubic state [11],

W (x,p) = 2πN
∣∣∣∣ 4

3γ

∣∣∣∣
1/3

Ai

([
4

3γ

]1/3

[3γ x2 − p]

)
, (26)

where Ai(x) is the Airy function and N a temporary
normalization factor. Since the ideal cubic state has infinite
energy, it is unnormalizable. The Wigner function (26) is
expediently normalized over the displayed area in Fig. 5(a).
We can see that the Wigner function is symmetric with respect
to the p axis and has an oscillating parabolic shape. These
characteristics also appear in the approximate cubic states
shown in Figs. 5(b)–5(e). We should point out that it is
impossible to define meaningful fidelities between the ideal
cubic state 5(a) and its approximate states 5(b)–5(e). The cubic
state has infinite energy, and its Wigner function (26) has
constant values along the parabolic lines on the phase space
to the points at infinity. Therefore, the overlap between the
ideal infinite-energy state and any finite-energy state should
be zero. We can see that, however, as the upper limit of photon
number becomes larger, the number of fringes along the p

direction increases approaching the ideal one. Those Wigner
functions of the approximate states can be considered to show
core non-Gaussianity that then spreads out on the phase space
by the following optimized squeezing.

So far we have not considered how to implement the
optimized squeezing onto the core non-Gaussian state. Ac-
tually, instead of adding another squeezing gate, the squeezing
operation can be embedded into the adaptive non-Gaussian
measurement by using the results in Sec. III C. We discuss the
details of it in Appendix A.

Finally, we comment on determining requirements for
the fidelity of the cubic gate and quality of the ancillae.
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FIG. 5. Wigner functions of the optimal ancillary states. (a)
The ideal cubic state for γ = 0.1 (expediently normalized over the
displayed area), (b) N = 1, (c) N = 3, (d) N = 5, (e) N = 9. Note
that the approximate states have offsets in the p direction, which can
be compensated by p displacement.

In general, requirements for quantum gates and resources
crucially depend on their applications, whose studies are
still in rapid progress. One example of the requirements for
resources is squeezing level of ancillary squeezed states. In CV
quantum teleportation [36] of coherent states, one can confirm
that the squeezing level of 20 dB in the entangled resource
states results in 10−2 infidelity between the input and the
output. While the CV regime has advantages in unconditional
and deterministic quantum operations in actual experiments,
this infidelity is not as good as we expect in exchange for
the required energy compared to its discrete-variable (DV)
counterparts. This drawback could be, however, reduced in
hybrid quantum information processing where information is
encoded in DV states and processed by CV operations [6].
In the case of the GKP encoding [9], it has been shown that
no more than a 20.5-dB squeezing level in resource states
of CV one-way quantum computing is enough to achieve a
fault-tolerance threshold of 10−6 for a (conservative) qubit
error-correction code [37,38]. Realization of the code has been

approached by 12.7-dB quantum-optical squeezing [39,40]
and even 17.6-dB spin squeezing [41]. Furthermore, a recent
study has shown that the fault-tolerance threshold of local
depolarizing noise per qubit can be given by 13.6% [42], which
is less strict. The above suggests that the same resources can
result in achieving different error rates that differ by orders of
magnitude depending on the applications, and more tractable
requirements can be found by furthering the studies of quantum
protocols. Similarly, requirements for the cubic gate are also
expected to be settled in a practical way, but it is still an open
question.

VI. CONCLUSION

We have introduced the concept of an adaptive non-
Gaussian measurement: a CV measurement with a set of
possible values, each of which is associated with a projection
onto a non-Gaussian state. The measurement is realized
by a pair of homodyne detectors and a supply of suitable
non-Gaussian ancillary states. One particular advantage of
this measurement is that an arbitrary Gaussian operation can
be implemented on the soon-to-be-measured quantum system
simply by tools of passive linear optics. In addition, some
non-Gaussian operations can be implemented in the same way
by making some of the measurement parameters dependent on
already measured values.

To demonstrate this design feature, we have proposed a
method of realizing the cubic gate [20]. The current proposal
does not require active operations to be performed on the
transformed quantum system, all of them being part of
the non-Gaussian measurement, which significantly improves
the feasibility of the setup. Specifically in the Heisenberg
representation, it turns out that nonlinearity of the gate is
created classically while the nonclassicality is given by the
non-Gaussian ancilla in terms of reducing residual noise.
By exploiting the noise term as a figure of merit, we have
found a new class of ancillary states that promise better
performance than the states of [21]. The final implementation
of the complete cubic gate can be therefore expected soon.
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APPENDIX A: CUBIC GATE WITH UNBALANCED
ADAPTIVE NON-GAUSSIAN MEASUREMENT

By replacing BBS2 in Fig. 2 with an unbalanced beam
splitter, we have another degree of freedom to effectively apply
arbitrary squeezing operation onto the ancillary non-Gaussian
state, as shown in Sec. III C. Thus, the Gaussian optimization
discussed in Sec. V can be embedded in the cubic-gate
schematic.
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We explain here an input-output relationship of the cubic
gate with unbalanced beam splitters. Transmittance and re-
flectance of the first beam splitter are represented as T1 and
R1 = 1 − T1, respectively. T2 and R2 are also defined in the
same way for the second beam splitter. After the beam-splitter
transformations, the quadratures of the output modes are

x̂ ′
0 =

√
T1x̂0 −

√
R2x̂1, (A1a)

p̂′
0 =

√
T1p̂0 −

√
R2p̂1, (A1b)

x̂ ′
1 =

√
R1T2x̂0 +

√
T1T2x̂1 −

√
R2x̂2, (A2a)

p̂′
1 =

√
R1T2p̂0 +

√
T1T2p̂1 −

√
R2p̂2, (A2b)

x̂ ′
2 =

√
R1R2x̂0 +

√
T1R2x̂1 +

√
T2x̂2, (A3a)

p̂′
2 =

√
R1R2p̂0 +

√
T1R2p̂1 +

√
T2p̂2. (A3b)

After measuring the x quadrature of mode 1′ and obtaining
value q, we set the phase factor

θ = arctan

(
6T2γ√

R2
q

)
. (A4)

Then we measure the quadrature x̂ ′
2 sin θ + p̂′

2 cos θ and obtain
value y. The p quadrature of the unmeasured mode 0′ can be
expressed with the measured values q and y as

p̂′
0 = 1√

T1
p̂0 −

√
R1√

T1R2 cos θ
y

+
√

R1T2

T1R2
p̂2 − 6γ

√
R1

T1

(
T2

R2

)3/2

q2

+
(

6R1T2γ√
T1R

3/2
2

x̂0 + 6
√

R1T2γ

R
3/2
2

x̂1

)
q. (A5)

We apply p displacement to this quadrature with value

pdisp =
√

R1√
T1R2 cos θ

y + 3γ
√

R1T2(T2 − R2)√
T1R

3/2
2

q2 (A6)

and obtain the output quadratures

x̂ ′′
0 =

√
T1

(
x̂0 −

√
R1

T1
x̂1

)
, (A7a)

p̂′′
0 = 1√

T1

{[
p̂0 + 3γ

(
R1T2

R2

)3/2

x̂2
0

]

+
√

R1T2

R2

(
p̂2 − 3γ x̂2

2

)

+ 6γR1

√
T1

(
T2

R2

)3/2
(

x̂0x̂1 + 1

2

√
T1

R1
x̂2

1

)}
.

(A7b)

We can see that the outputs are equal to Eq. (23) if we set
T1 = R1 = T2 = R2 = 1/2. Note that, if we use unbalanced
beam splitters, the displacement has a quadratic term as shown
in Eq. (A6).

To explicitly see how the transmittances of the beam
splitters affect on the quadratures of the ancillary non-
Gaussian state, we scale the strength of cubic nonlinearity
γ to (R2/R1T2)3/2γ . The output p quadrature (A7b) is then
expressed as

p̂′′
0 = 1√

T1

{(
p̂0 + 3γ x̂2

0

)

+
⎡
⎣

√
R1T2

R2
p̂2 − 3γ

(√
R2

R1T2
x̂2

)2⎤⎦

+ 6γ

√
T1

R1

(
x̂0x̂1 + 1

2

√
T1

R1
x̂2

1

)}
. (A8)

The second term represents the nonlinear noise determined by
the non-Gaussian measurement. We can see that the ancilla
is effectively squeezed by the squeezing factor

√
R1T2/R2,

which can be fully controlled by choosing transmittance of
the second beam splitter. While universal squeezing operation
in actual experiments [14,18,19] adds non-negligible noise
to the input state because of finite squeezing in its resource
state, the effective squeezing in the heterodyne measurement
does not require additional resource states, which helps in
the preparation of the approximate cubic state with high
purity.

APPENDIX B: NUMERICAL METHOD OF
APPROXIMATING PHOTON-NUMBER SUPERPOSITION

TO THE CUBIC STATE

In Sec. V, we considered the variance V (p̂NLQ) as a figure
of merit to approximate the cubic state with photon-number-
superposition states up to certain photon level and squeezing.
Intuitively, the approximation can be done by numerically
optimizing all of the coefficients of a superposition state and
the squeezing level, but it often leads to locally optimum
solutions, especially when increasing the upper limit of photon
numbers. Here we reduce the problem into optimization with
two variables, regardless of the size of the Hilbert space. With
each set of the two variables, an optimized superposition state
can be derived as an eigenstate of the minimum eigenvalue
of a certain positive-semidefinite operator. By numerically
creating a minimum-search map with the two variables, we
can make sure that the solution is almost certainly the true
optimum one. The method is a variation of the classical
variance-minimization problem [43].

Suppose HN is a (N + 1)-dimensional Hilbert space up to
the N -photon level, and |ψ〉 is a state in HN . Our purpose is to
find a set of the optimum state |ψ〉 and the optimum parameter
λ′ that minimizes the variance of the nonlinear quadrature
ŷ(λ′) = λ′p̂ − 3(x̂/λ′)2. This problem can be written as

min
|ψ〉 ∈ HN

λ′ ∈ R

V (|ψ〉,λ′), (B1a)

V (|ψ〉,λ′) = 〈ψ |[ŷ(λ′) − 〈ŷ(λ′)〉]2|ψ〉, (B1b)

where 〈ŷ(λ′)〉 is the expectation value 〈ψ |ŷ(λ′)|ψ〉.
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FIG. 6. Minimum-search map: (a) N = 1, (b) N = 3, (c) N = 5,
(d) N = 9. The values are normalized by shot noise level and shown
in dB scale.

To make this problem digestible, we alternatively consider
another minimization problem. Let d be a real number. We
then replace the expectation value in Eq. (B1b) with d and set
a new evaluation function,

Z(|ψ〉,λ′,d) = 〈ψ |[ŷ(λ′) − d]2|ψ〉. (B2)

Next we introduce another evaluation function W (d) defined
as minimum of Z(|ψ〉,λ′,d) with respect to |ψ〉 ∈ HN and
λ′ ∈ R. This can be expressed as

W (d) = min
|ψ〉 ∈ HN

λ′ ∈ R

Z(|ψ〉,λ′,d). (B3)

Suppose W (d) is minimum when d = d	. In addition, suppose
Z(|ψ〉,λ′,d	) is minimum when |ψ〉 = |ψ	〉 and λ′ = λ′	.
Then we can say that the set (|ψ	〉,λ′	) is the true optimum
set that minimizes V (|ψ〉,λ′). This is verified as follows. Let

〈ŷ(λ′)〉	 be the expectation value 〈ψ	|ŷ(λ′)|ψ	〉. Then
Z(|ψ	〉,λ′	,d	) � W (〈ŷ(λ′	)〉	)

� Z(|ψ	〉,λ′	,〈ŷ(λ′	)〉	) (B4)

and consequently (〈ŷ(λ′	)〉	 − d	)2 � 0, which means d	 =
〈ŷ(λ′	)〉	. Therefore, for any |ψ〉 ∈ HN , any λ′ ∈ R, and
the corresponding expectation value 〈ŷ(λ′)〉 = 〈ψ |ŷ(λ′)|ψ〉,
it holds that

V (|ψ	〉,λ′	) = W (d	)

� W (〈ŷ(λ′)〉) � Z(|ψ〉,λ′,〈ŷ(λ′)〉) = V (|ψ〉,λ′),
(B5)

which means V (|ψ	〉,λ′	) is minimum. As a result, the
problem can be solved by searching for a state that minimizes
Z(|ψ〉,λ′,d) with every λ′ and d.

The point is that Z(|ψ〉,λ′,d) is a quadratic form, and
therefore each optimum state is determined as an eigenstate
of the minimum eigenvalue of [ŷ(λ′) − d]2 represented by the
limited Hilbert space. In the case that we look for the optimum
state up to the N -photon level, the matrix representation of
[ŷ(λ′) − d]2 reads

Y (λ′,d) =
N∑

m,n=0

Ymn(λ′,d)|m〉〈n|, (B6)

Ymn(λ′,d) = 〈m|[ŷ(λ′) − d]2|n〉, (B7)

and the optimum state in terms of (λ′,d) is found as the
eigenstate of the minimum eigenvalue of the matrix Y (λ′,d),
which can be deterministically obtained by numerical calcu-
lation. This implies that the problem is now broken down
into a two-variable optimization problem. We can create a
minimum-search map min|ψ〉∈HN

Z(|ψ〉,λ′,d) with respect to
λ′ and d, which makes it easy to look for the true optimum
solution.

Figure 6 shows some examples of the map used to derive
the optimized superposition states in Fig. 5. We can see that
the number of local minima increases as the upper limit of
photon numbers becomes larger. By choosing suitable ranges
and resolutions of (λ′,d), we almost certainly find the true
minimum and, consequently, the true optimized state.
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