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Introduction 

 

My main research activities were development of new chemoinformatic approaches and their 

application as well as state-of-the-art approaches in the fields of drug discovery, toxicology, 

modeling of physicochemical properties and reactions. The developed approaches and tools cover a 

wide range of topics (Figure 1). All of the described tools are open-source and contribute to open-

science that should support further researches and progress in corresponding areas. 

 

 

Figure 1. The main activities and developments. The number of average downloads per month for 

different software tools was provided based on statistics from pypistat.org taken for the period of six 

month from 2024-02-01 to 2024-07-30. 

 

Quantitative structure-activity relationship (QSAR) modeling has a long history. It was 

developed primarily for prediction of properties of individual compounds that still remains the major 

direction of QSAR research. However, there are many other chemical systems which may get 

benefits from prediction of their properties. In the Chapter 1 we describe the development of the 

molecular representation which is applicable to not only single compounds, but also to mixtures and 

chemical reactions. We also suggested new cross-validation protocols which give more reliable 

estimates of the predictive ability of models for different scenarios. 

QSAR models evolved over time from simple linear models to complex non-linear ones. The 

latter lost one of advantages of simple models – model interpretability – and often are considered as 

“black boxes”. In the Chapter 2 we describe the development of new interpretation approaches. The 

major one is the universal interpretation approach which can retrieve contributions of fragments from 

any model regardless used machine learning method or descriptors. This became even more 
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important recently with introduction of complex neural networks to predict compound properties. We 

successfully demonstrated the universal nature of the approach on graph convolution neural 

networks. Introduction of this approach and similar ones changed the interpretation paradigm from 

“model ⟶ descriptor ⟶ structure” to “model ⟶ structure”. We also suggested and developed the 

first benchmarks to evaluate interpretation approaches and model interpretability. 

Pharmacophore modeling is one of the major tools in drug design. However, the majority of 

available tools are commercial and there only few free ones. Chapter 3 describes implementation of 

3D stereosensitive pharmacophore multiples which found them useful in ligand-based 

pharmacophore modeling, pharmacophore modeling based on molecular dynamics simulations and 

machine learning. All the developed tools are open-source and available for the scientific 

community. 

In Chapter 4 we tackled the problem of prediction of compound properties using 3D 

representation and machine learning. Currently used approaches had multiple limitations. The major 

ones are inability or high complexity to rationally select relevant conformers for modeling or 

simplistic schemes to aggregate multiple conformers into a single vector of descriptors. All these 

result in poor predictive performance of obtained models. We revisited the multi-instance learning 

(MIL) approach which can naturally treated situation where a molecule is represented by multiple 

conformers. We implemented several the most commonly used MIL approaches and demonstrated 

their superior predictive ability in combination with 3D pharmacophore multiplets relatively to 2D 

models in tasks of biological activity prediction. We also showed applicability of MIL approaches to 

prediction of enantioselectivity of catalysts. 

De novo design remains one of the attracting research areas because it allows to find promising 

compounds without full enumeration of chemical space. The major challenge for de novo approaches 

is synthetic accessibility of generated molecules. In Chapter 5 we describe a new fragment-based 

approach named Chemically Reasonable Mutations (CReM) which provides a clear control over 

synthetic complexity of generated molecules and demonstrate very competitive outputs in 

comparison with state-of-the-art approaches including generative neural network models. 

Chapter 6 contains a few examples of computer-aided development of biologically active 

compounds. In particular, two projects were described in details: i) development of antagonists of the 

open and the closed form of integrin αIIbβ3, which could be promising anti-platelet agents, and ii) 

anti-leishmanial compounds. 
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Chapter 1. Machine learning modeling of properties single compounds, mixtures and reactions 

 

The main purpose of machine learning (ML) in chemistry is to establish quantitative-structure-

activity(property) relationships (QSAR/QSPR) to predict properties of new chemical entities. From 

the beginning the major modeling objects were single compounds and their physicochemical and 

biological properties. Molecules are encoded as sets of features representing their structures and 

machine learning algorithms establish a correlation between these features and observed property 

values. The established models are used to predict properties of new compounds. This helps to focus 

research efforts on the most promising compounds and greatly reduces costs and time required for 

development. Successes in prediction of properties of single compounds1, 2 motivated researchers to 

extend the established approaches on other chemical systems. The major challenge was to develop 

appropriate representations to encode such system. Whereas there were multiple approaches to 

encode single molecules they could not be simply applied to represent, for example, compound 

mixtures or chemical reactions. In particular, for modeling of mixture properties there were 

suggested descriptors based on partition coefficient for mixtures3, 4, integral additive5, 6 and non-

additive descriptors7-9. These approaches were frequently limited in the composition of represented 

mixtures, e.g. only binary mixtures or only 1:1 mixtures. They could be poorly suitable for modeling 

of non-additive mixture properties or they may lack of encoding of local chemical environment 

which may be more relevant to model a studying property. 

For reaction modeling there are two groups of approaches. The former approaches use 

explicitly labeled reaction centers identified manually or by atom-atom mapping. In particular, they 

require a construction of a special graph - a condensed graph of reaction - which was used to 

calculate conventional fragment descriptors10, 11. Other group of approaches implicitly encodes 

information about reaction center. These approaches calculate difference between descriptors of 

products and reactants12 or combine descriptors of substrates13. All these approaches require 

perfectly balanced reactions for modeling otherwise atom-atom mapping may result in erroneous 

outputs or feature vector may contain chemically meaningless terms. Since most of raw reaction data 

in the widely used databases like CAS REACT or Reaxys are not balanced, the data curation step is 

needed before using these modeling methods. 

Here, we describe the simplex representation of molecular structure approach which was 

extended to enable encoding of chemical reactions and compound mixtures of arbitrary 

compositions. Moreover, within the same framework we were able to improve prediction of 

macroscopic properties of single compounds by applying a “quasi”-mixture approach which 

explicitly considers intermolecular interaction. The other major contribution was the development of 

new validation strategies to more rigorously evaluate the predictive ability of mixture and reaction 

models that was never done before. 
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1.1. Simplex representation of molecular structure (SiRMS) 

 

Simplexes are tetraatomic fragments of fixed composition, structure, chirality and symmetry 

(Figure 2). The counts of identical simplexes in a molecule are simplex descriptors which can be 

used to find relationships between structure of studied molecules and their activities/properties. The 

important feature of simplexes is labeling of atoms not only by elements but also by atomic 

properties, such as lipophilicity, partial charge, H-bonding, etc (Figure 2). The types of used atomic 

parameters can be selected taking into account a studied property/activity. Property values 

represented by a real number, e.g. atomic charge, are split on labeled bins and atoms received a label 

of a corresponding bin, see an example of calculation simplexes based on partial charges in Figure 2. 

For those properties which are naturally encoded by discrete labels, like H-bonding, we assign 

corresponding labels directly, e.g. H-bond donor, H-bond acceptor, non-H-bond donor or acceptor. 

This results in a more comprehensive representation of a molecular object and incorporate 

physicochemical properties which may be important for a studied property/activity. Another unique 

feature of SiMRS is encoding of a molecule not only with fully connected fragments, but also by 

fragments were some atoms are disconnected. This gives the ability to explicitly capture 

contributions of distant substructures co-occurred in a molecule. Simplexes can also represent 

molecules at different levels of complexity. At 1D levels simplexes are combinations of atoms 

regardless their connectivity, at 2D level they take into account connectivity, at 3D they encode 

spatial arrangement of atoms and can discriminate chiral compounds which are encoded by different 

sets of chiral simplexes, at 4D level simplex descriptors are calculated by weighted sum of 3D 

simplexes of individual conformers, where weights represent Boltzmann distribution of conformers, 

that allows to encode ensembles of conformers. More detailed description of SiRMS approach can be 

found in references14, 15. 

 

Figure 2. Example of generation of 2D simplexes for formic acid. 

 



9 

1.2. Modeling of non-additive properties of mixtures 

 

To represent a mixture of compounds we consider it as a single molecular graph comprising 

molecular graphs of individual components. We enumerated all simplexes. Fully connected 

simplexes always encode a single component, whereas disconnected simplexes can represent an 

individual component of a mixture as well as a mixture itself (Figure 3). Here, we used the feature of 

SiRMS to encode disconnected fragments. Since the same simplex may occur within individual 

components and a mixture we label simplexes of a mixture with a special mark to distinguish them 

from simplexes of individual components. This representation scheme explicitly encodes possible 

intermolecular interactions between components that should better describes physical processes 

occurred in mixtures. 

 

Figure 3. Scheme of calculation of simplexes for a binary mixture. 

 

Descriptors of individual components are weighted according to their molar ratio and 

summarized. Mixture descriptors are multiplied on the double minimal weight according to eq 1. 



 +

=
+211

2211

D2x

DxDx
D

       (1) 

where D is the descriptor value, x1 and x2 are molar fractions of components 1 and 2 (x1<x2 and 

x1+x2=1), D1, D2, and D1+2 are descriptor values for individual components 1 and 2, and for their 

mixture, respectively. 

We suggested more rigorous validation strategies to evaluate predictive performance of 

mixture models to better represent different scenarios of their usage (Figure 4). These strategies are 

applicable if a data set is comprised from pure compounds and their mixtures where every mixture is 

represented by multiple data points at different concentration/molar ratio. 
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“Points-out”. All pure compounds and a half of randomly chosen mixture data point are going 

to a training set. This is the loosest strategy which evaluates the ability of a model to predict 

properties for new concentrations/molar ratios for a mixture for which some data points are already 

available. 

“Mixtures-out”. In each cross-validation fold all pure compounds are always kept in a training 

set and whole mixtures (all data points) are randomly selected to the corresponding test set. This 

strategy estimates the ability of a model to predict a property for a new mixture of pure compounds. 

“Compounds-out”. Within this strategy a pure compound and all its mixtures are 

simultaneously placed in a test set for every fold. In this case folds are created not randomly but in a 

supervised manner to create balanced folds if possible, because compounds may appear in different 

numbers of mixtures. This strategy is the strictest one and estimates the ability of a model to predict 

properties of mixtures comprising new compounds not available in a training set. 

This differentiation of validation strategies is important because provides more relevant and 

reasonable estimate of model predictivity in comparison with commonly used random splitting and 

simulates different scenarios of model usage. The more detailed description of the SiRMS mixture 

approach and the suggested cross-validation protocols can be found in the reference16. 
 

 

Figure 4. Strategies for validation of mixture models. 

 

The developed workflow was applied for modeling of bubble point temperatures of binary 

mixtures of liquids (Figure 5). Theoretical assessment of these data could significantly reduce the 

costs of selection of proper agents for separation processes in industry. The dataset was compiled 

from Korean Data Base (KDB)17. It consists of 67 pure liquids and 167 of their mixtures. Each 
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mixture has been represented by several (7–57) points, thus, 167 mixtures have been described by 

3185 data points. The matrix of mixtures was very sparse and consisted of only 167 out of possible 

2211 combinations. 

The models built on the entire modeling set were validated in an external test set comprising 94 

new mixtures involving 66 compounds. Only 27 out 94 mixtures (632 data points) contained no new 

pure compounds and 67 mixtures (1386 points) contained at least one new compound. Thus, 32 

external compounds were common to the modeling set, whereas other 34 were new. Four mixtures 

had no common compounds with the modeling set. 
 

 

Figure 5. Vapor-liquid equilibrium curve. 

 

Models were built using Random Forest algorithm18. Cross-validation was repeated several 

times for each validation strategy (Figure 4) using different fold compositions to get more robust 

estimates of model accuracy. Within the “points-out” strategy we estimated the ability of the model 

to reconstruct a curve from a subset of available data points. In the “mixture-out” strategy we 

estimated the ability to reconstruct curves for mixtures missing in the initial mixture matrix while 

having data points for individual components. In “compounds-out” we estimated the ability of the 

model to predict mixtures for unseen compound out of the training set. As it was expected the 

“points-out” strategy resulted in the most accurate predictions with the root mean square error 2.3K 

that suggests that we can reliably reconstruct partially missing bubble point curves. The “mixtures-

out” strategy demonstrated reasonably high performance for both cross-validation and external test 

set, 5.7K and 6.6K, correspondingly. Thus, we may conclude that the model can be used to fill gaps 

in the existing matrix of binary mixture of liquids. The “compound-out” strategy demonstrated the 

lowest accuracy and had large difference between cross-validation and external test set. This 

indicates that reliability of prediction of bubble point temperatures for new components is relatively 

poor. 
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Table 1. Statistical characteristics of models predicting bubble point of binary mixtures built by 

different validation strategies. 

Validation set Parameter point-out mixtures-out compounds-out 

cross-validation 
R2 0.98 0.90 0.79 

RMSE, K 2.3 5.7 10.3 

external test set 
R2  0.85 0.39 

RMSE, K  6.6 18.5 

 

We compared performance of our QSPR models with COSMO-RS approach which is based on 

dielectric continuum models and statistical thermodynamic. COSMO-RS could also reproduce 

curves with high accuracy and showed performance on the “mixture-out” set of 27 test set mixtures 

(R2=0.84, RMSE = 6.6K) comparable to that showed by our QSPR model. On the “compound-out” 

test set represented by 67 mixtures COSMO-RS showed lower accuracy (R2=0.78, RMSE = 13.0K), 

which was still better than performance of our model. 

 

1.3. Modeling of rate constants of chemical reactions 

 

Chemical reactions are transformations of one or more reactants into one or more products. 

Reactants and products can be considered as individual mixtures and, thus, they can be encoded 

using approaches applicable to mixtures. This may solve the problem with imperfectly balanced 

reactions which is particularly important for approaches relied on atom-atom mapping, which are the 

most widely used now. 

To adopt the approach described in the previous section to represent reactions as mixtures we 

made following extensions: 

1) the number of atoms in a fragment (simplex) can be variable, usually from 2 to 6; 

2) to avoid combinatorial explosion we enumerate only fully connected fragments and 

fragments having only two disconnected components; 

3) we improved the representation approach to be applicable to mixtures with arbitrary number 

of components and molar ratios. 

The general workflow of generation of mixture descriptors for reaction consists of three steps 

(Figure 6): 

I. We enumerate all subgraphs consisting of 2 to 6 atoms. For the mixture of three components 

A, B and C, we generate fragments of individual species including atoms of only A and B, as well as 

mixture fragments including atoms of two (AB, BC, AC) or three (ABC) components. For 

components containing less than 2 atoms (e.g., component C), individual descriptors are not 

generated. In this way additionally to individual components we encode potential bi- and tri-
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molecular interactions between components in a mixture of reactants or products. Encoding of a 

higher order interactions was not considered because their probability is extremely low. 

Each type of fragments is considered as an individual descriptor and its count weighted by the 

occurrence of a corresponding component is the descriptor value. 

II. The feature vectors of individual components are summed up and result in a final feature 

vector DS = A + B + C. Similarly, summation of the vectors of mixture simplexes AB, BC, AC and 

ABC results in DM vector representing intermolecular interactions. 

III. Concatenation of DS and DM vectors results in the feature vector of the whole mixture 

(SiRMS-mix). 

 

 

Figure 6. Generation of descriptors for a mixture of three components. 

 

Since a chemical reaction can be represented as an ensemble of two mixtures: a mixture of 

starting materials (reactants) and a mixture of products, the reaction feature vector can be computed 

as their combination. Two different ways of combining mixture feature vectors into reaction feature 

vector have been investigated: (i) their concatenation and (ii) by calculation of the difference 

between product and reactant mixture descriptors (Figure 7). 
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Figure 7. Reaction descriptor vectors based on the concatenated product and reactant mixture 

descriptors (react-SiRMS-concat) and on their difference (react-SiRMS-diff). 
 

The suggested approach was applied to model rate constants of 313 E2 reactions carried out at 

different temperatures in pure solvents which were collected from literature19. An E2 reaction 

proceeds in a single step with a single transition state. It results in a formation of a π-bond due to 

synchronous trans-elimination of a leaving group (L) in the presence of a base (B-) needed to tie in 

the hydrogen atom (Figure 8). The dataset involves 90 distinct substrates and 60 distinct products, 

the most representative of them are listed in Figure 9. Among the most representative leaving groups 

one can mention bromide and chloride anions occurred in 101 and 93 reactions, respectively, as well 

as p-tosylate and trimethylamine which occurred in 35 reactions each. The other seven leaving 

groups are occurred in very few reactions. Overall, 23 bases were detected, the most representative 

of them were methoxide occurred in 59 reactions, ethoxide (38 reactions), tert-bytoxide (30), 

thiophenyl (30), triethylamine (24), bromide (20), chloride (14) and hydroxide (14) ions and 

piperidine (10). 

 

 

Figure 8. A bimolecular elimination reaction. (top) Schematic representation of the E2 reaction 

mechanism, where B− is a base and L is a leaving group. (bottom) An example of an E2 

transformation of (9H-fluoren-9-yl)methanol into 9-methylene-9H-fluoren, where CH3O
− (from 

sodium methylate) is a base and hydroxide ion is a leaving group. 
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Reactants 

      
14 13 12 11 10 10 

 

Products 

      
27 25 25 15 14 13 

      

11 10 10    

 

Figure 9. The most frequently occurred substrates and products in the dataset of E2 reactions. 

 

To build models we used Random Forest approach. For encoding reactions we used simplexes 

included from 4 to 6 atoms. The atoms were labeled either by elements (elm) and partial atomic 

charges (chg) using the standard binning scheme (Figure 2). 

For validation of models we introduced for the first time a more rigorous “product-out” cross-

validation strategy which was inspired by the validation strategies developed for mixture model 

assessment described in the previous section. Within the “product-out” strategy we remove all 

reactions comprising a particular product to a test set for a particular fold. Since the number of 

reactions associated with individual products varied a lot, we implemented a special Monte Carlo 

protocol which stochastically created a given number of balanced folds. We repeated it ten times to 

get a more robust estimate of model predictive performance. For comparison purposes we used the 

conventional cross-validation strategy where reactions were split on folds randomly (“reaction-out”). 

In order to discard reactions dissimilar to those in the training set, the “Fragment Control” 

applicability domain approach has been used20. The “Fragment Control” discards any test set 

reaction containing fragments which don’t occur in the training set reactions. An applicability 

domain was applied to the test set reactions at each fold followed by assembling the results for all 

folds. In such a way, statistical parameters were calculated for the entire set. Data coverage was 

assessed as a ratio of the number of reactions accepted by applicability domain to the total number of 

reactions. 
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For comparison we used reaction fingerprints and condensed graph of reaction approaches. A 

reaction fingerprint is the difference between count-based fingerprints of products and reactants. we 

used three types of reaction fingerprints developed by Schneider et al.12 and implemented in 

RDKit21: (i) atom pairs representing two particular atoms with the specified number of non-hydrogen 

neighbor atoms separated by up to three bonds22, (ii) Morgan fingerprints identical to extended-

connectivity fingerprints with radius 223  and (iii) topological torsions representing four 

consecutively linked non-hydrogen atoms with the specified number of π-electrons and the number 

of non-hydrogen neighbor atoms24. The other comparable approach is a condensed graph of reaction 

(CGR). CGR is a special molecular graph merging product and reactants in a single entity.25 Formed 

and cleaved bonds (dynamic bonds) are labeled with special marks. From CGR conventional 

fragment descriptors can be computed. We calculated augmented atoms and sequences with length 

varying from 1 to 8 atoms using ISIDA Fragmenter tool10. 

We found that react-SiRMS-diff descriptors performed a little bit better than corresponding 

react-SiRMS-concat but in the majority of cases the difference was negligible (Table 2). 

Combination of simplexes labeled by charge and element resulted in comparable performance to 

individual labeling schemes. As expected the “product-out” cross-validation strategy demonstrated 

lower performance than the “reaction-out” strategy. However, taking into account applicability 

domain of models the performance of the “product-out” validation strategy substantially increased at 

cost of lower coverage. For example, for react-SiRMS-diff R2
AD (chg+elm) increased from 0.42 to 

0.74 at the cost of lowering the coverage from 100% to 15%. Such a big lost in the data coverage can 

be explained by high structural diversity and relatively small size of the data set due to which the test 

set objects often contain the fragments absent in the training set. This suggests that the models 

cannot extrapolate too far reliably, however within the chosen applicability domain model 

performance is reasonably high. 
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Table 2. Cross-validation performance of models predicting rate constants of E2 reactions. (AD 

means performance taking into account applicability domain) 

# Model SiRMS atom 

labeling 

Validation 

strategy 

R2 RMSE R2
AD RMSEAD Coverage 

4)  

react-SiRMS-

diff 

chg 

reaction-out 

0.62 0.87 0.68 0.83 0.80 

5)  chg+elm 0.68 0.81 0.74 0.74 0.76 

6)  elm 0.69 0.78 0.74 0.74 0.85 

7)  chg 

product-out 

0.36 1.14 0.64 0.86 0.22 

8)  chg+elm 0.42 1.08 0.74 0.75 0.15 

9)  elm 0.47 1.03 0.64 0.90 0.38 

10)  

react-SiRMS-

concat 

chg 

reaction-out 

0.63 0.86 0.67 0.84 0.79 

11)  chg+elm 0.67 0.81 0.73 0.76 0.75 

12)  elm 0.69 0.79 0.73 0.75 0.83 

13)  chg 

product-out 

0.35 1.15 0.62 0.89 0.21 

14)  chg+elm 0.39 1.11 0.71 0.80 0.14 

15)  elm 0.43 1.07 0.59 0.90 0.37 

16)  
Atom pairs FP 

 reaction-out 0.61 0.89 0.62 0.87 0.97 

17)   product-out 0.35 1.14 0.41 1.07 0.64 

18)  
Morgan FP 

 reaction-out 0.67 0.82 0.70 0.70 0.92 

19)   product-out 0.40 1.10 0.67 0.81 0.33 

20)  Topological 

torsions FP 

 reaction-out 0.60 0.90 0.62 0.88 0.94 

21)   product-out 0.34 1.15 0.51 1.03 0.45 

22)  
ISIDA/CGR 

 reaction-out 0.69 0.79 0.74 0.74 0.88 

23)   product-out 0.41 1.09 0.61 0.90 0.16 

 

Reference models demonstrated similar trends in performance change depending on the 

validation protocol and taking into account applicability domain (Table 2). The best reference 

models based on ISIDA/CGR (#20, Table 2) and Morgan fingerprints (#16, Table 2) demonstrated 

poorer performance than the best SiRMS model (#5, Table 2). The corresponding R2
AD and coverage 

for “product-out” cross-validation scheme were 0.61/16% (p-value = 0.0002) and 0.67/33% (p-value 

= 0.0080) versus 0.74/15%. This confirms that the suggested mixture-based encoding of reaction is 

competitive to state-of-the art methods and can be used in future applications. More details about the 

mixture-based reaction representation and modeling results can be found in the paper26. 

 

1.4. “Quasi”-mixture modeling for prediction of macroscopic properties of single compounds 

 

Macroscopic properties of pure compounds, e.g. critical temperature, volume and pressure, are 

strictly determined by intermolecular interactions. Commonly used QSPR approaches use either 2D 

topological descriptors27 or 3D descriptors computed using quantum chemical calculations for a 

single molecule28 or their combination29, 30. Those descriptors calculated from individual molecules 

implicitly encode possible intermolecular interactions. We suggested the approach where possible 

intermolecular interactions were explicitly encoded by 2D descriptors that should improve the 

predictive ability of models31. 
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A pure compound can be represented as a “quasi”-mixture of two identical components in ratio 

1:1. Further, we can apply to this “quasi”-mixture the same representation approach as for mixtures 

with different components (Figure 10). An individual molecule is encoded by connected and 

disconnected fragments (simplexes) whereas a mixture is represented by disconnected simplexes 

only. This explicitly supply to a model possible intermolecular interactions of a pure compound in a 

condensed phase. 

 

Figure 10. Example of “quasi”-mixture representation. 

 

To evaluate the suggested approach we collected three data sets on critical temperature, volume 

and pressure. The experimental data were taken from the comprehensive handbook32. Wrong or 

incomplete data were curated using NIST Webbook database. Considered compounds belonged to 

various classes, such as saturated and unsaturated hydrocarbons, aromatic hydrocarbons and their 

derivatives, heterocyclic compounds, alcohols, ethers, esters, various halogenated compounds, etc. 

The experimental Tc values were available for 407 compounds, Pc – for 382 compounds, Vc – for 309 

compounds. Collected data cover the large range of values (for critical temperature from about 100 K 

to about 900 K, critical pressure from about 10 to about 90 bar, critical volume from about 100 to 

about 1000 cm3/mol). 

As a reference modeling approach we applied the common SiRMS approach encoding single 

molecules (Figure 2). Models were built using Random Forest method. To estimate the predictive 

ability of models we used 3×5-fold cross-validation. All models had high predictive performance 

(Table 3). Determination coefficients differed insignificantly for single molecule and “quasi”-

mixture approaches. However, difference in RMSE was statistically significantly. “Quasi”-mixture 

models improved RMSE for Tc, Vc and Pc on 7%, 15% and 6%, respectively. 
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Table 3. Statistical performance of models with 95% confidence interval calculated for 3 × 5-fold 

cross-validation. 

  Tc Vc Pc 

single molecule 
R2 0.87 ± 0.04 0.96 ± 0.01 0.88 ± 0.03 

RMSE 40.1 ± 0.7 (K) 28.0 ± 0.10 (cm3/mol) 4.45 ± 0.07 (bar) 

“quasi”-mixture 
R2 0.89 ± 0.02 0.96 ± 0.01 0.90 ± 0.02 

RMSE 37.2 ± 0.7 (K) 24.0 ± 0.12 (cm3/mol) 4.17 ± 0.05 (bar) 

RMSE improvement  7% 15% 6% 

 

1.5. Summary 

 

We developed mixture representation within the SiRMS approach. Its main feature is explicit 

encoding of intermolecular interactions. This representation was successfully applied to model 

properties of not only conventional mixtures (bubble point curves16) but also chemical reactions (rate 

constants26) and individual compounds (critical properties31). We showed that the developed 

approach result in models with comparable or better performance than state-of-the-art methods that 

confirmed its applicability. 

To improve estimation of the predictive ability of models we suggested new cross-validation 

protocols and demonstrated their applicability on several tasks. These protocols more rigorously 

evaluate model performance and better correspond to real use cases in comparison to random fold 

split. The protocols were further applied in other studies33, 34 and inspired the development of 

analogous approaches. In particular, for reaction modeling there were suggested “transformation-

out” and “solvent-out” cross-validation protocols35 or the “everything-out” strategy for mixture 

modeling36. 

We made an open-source implementation of the SiRMS approach including mixture-based 

descriptors which is available as a Python package sirms - https://github.com/DrrDom/sirms. 

 

  

https://github.com/DrrDom/sirms
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Chapter 2. Approaches to interpretation of machine learning models 

 

Machine learning models were developed from simple and linear models to more complex 

nonlinear ones able to process large heterogeneous data sets. The latter usually have the greater 

predictive ability but they frequently lack interpretability to understand the reasons of model 

decisions. This became extremely important recently with wide introduction of deep learning 

approaches in chemoinformatics. These complex models are usually considered as “black boxes” 

which are hardly or non-interpretable. Understanding the reasons of model decisions can be useful in 

knowledge-based validation of models and increase confidence that the model is right for right 

reasons. Another aspect of model interpretation is to use information about favorable and 

unfavorable structural motifs revealed by a model to guide next design steps in optimization of 

compound properties. 

The commonly using interpretation approaches calculate contributions of individual 

descriptors. This creates one of their major limitations. They are applicable only to models built on 

clearly interpretable descriptors. Otherwise it is impossible to understand interpretation output. 

However, models trained on complex non-interpretable or hardly interpretable descriptors can 

demonstrate comparable or better predictive abilities. This became most pronounced recently with 

introduction of graph convolution neural networks and similar end-to-end modeling approaches 

which take a molecule as an input, create embedding of a molecule inside the network and establish a 

correlation between embedding and a target property. Such models could not be interpreted using 

conventional approaches. 

Here we describe the developed approach to interpret Random Forest models, which is model-

specific, and the universal interpretation approach (UIA), which can be applied to any QSAR/QSPR 

models regardless of machine learning methods or descriptors used. The latter changed the paradigm 

in interpretation of machine learning models, because we could skip the intermediate step of 

calculation of contribution of descriptors and directly estimate contributions of individual atoms or 

group of atoms. Therefore, interpretability of descriptors becomes not a necessary requirement. We 

demonstrated this ability of UIA in multiple studies and adopted this approach to interpretation of 

graph convolution models that confirmed its universal applicability. 

With introduction of deep learning in QSAR/QSPR studies multiple special interpretation 

approaches were suggested and adopted. However, as it was shown in pilot studies not all of them 

are reasonable to apply to interpretation of QSAR/QSPR models. Therefore, to progress the field 

further there is a need to have appropriate benchmarks relevant to chemoinformatics tasks. To 

address this issue we suggested the first benchmark for QSAR/QSPR interpretation approaches. 
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2.1. Interpretation of Random Forest models 

 

Random Forest (RF) belongs to “black box” models. This is an ensemble of decision trees built 

using three principles 18: 

1. Every tree is trained on a bootstrap subset of training set molecules. 

2. Only a random subset of descriptors is considered to select an optimal split in each node. 

3. Every tree is grown till maximum depth. 

Thus, every tree is overfitted on a random subspace of training set examples and descriptors. 

Aggregation of predictions made by such weak learners gives a great boost to predictive 

performance. Predictions are made by averaging in the case of regression models and by majority 

voting in the case of classification ones. RF models are widely used in QSAR modeling due to their 

robustness and few tuning parameters to which models are sensitive: the number of trees and the 

number of randomly chosen variables considered at each node split (mtry)
37. Samples which were not 

used for training of an individual tree create an out-of-bag (OOB) set which is used for estimation of 

model robustness and its predictive ability. 

Individual trees are interpretable by design (Figure 11). They are recursively constructed by 

applying simple rules, like “IF x < 5 THEN left node ELSE right node”. In a leaf node the average 

property value of training set examples reached this node is assigned as a predicted value to test 

examples (in classification this is the most frequently occurred label). Therefore, the prediction rule 

is a combination of rules of individual nodes which are on the path from the root to the leaf node and 

it can look like “IF S1 ≤ 3 AND S2 ≤ 2 THEN pIC50 = 8.1” (Figure 11). This explains the decision of 

a model and can provide a deeper insight in the case of interpretable descriptors. However, in the 

case of an ensemble of randomized trees this interpretation approach does not work because there is 

no straightforward way to combine different rule sets or determine contributions of individual 

descriptors. 

 

Figure 11. Example of a decision tree. 
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For a long time there was only one approach for interpretation of RF models suggested by Leo 

Breiman in its seminal work – variable importance18. Values of an individual variable are shuffled 

and predictions for the out-of-bag samples are made. Variable importance is calculated as a decrease 

in prediction accuracy. The bigger the drop in prediction accuracy the more important the variable. 

To get a more robust estimate, this procedure is applied several times to calculate average 

importance. The lack of the importance measure – it says nothing about the direction of variable 

influence, positive or negative. 

We suggested an approach38 to calculate descriptor contributions which can be interpreted in a 

way similar to coefficients of ordinary linear regression model and overcome limitations of variable 

importance suggested by Breiman. The developed approach is applicable only to regression models. 

The procedure of the calculation of descriptor contributions is based on two features: 1) in each node 

only one descriptor is used for splitting, 2) the difference between mean activity values in parent and 

child nodes can be considered as a predicted activity change caused by this descriptor (local 

increment). 

In each node of a tree we calculate average activity values for training set examples reached it 

(Figure 12): 
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Amean – average activity values of training set molecules in a node; Ai – activity of i-th molecule; n – 

the number of training set molecules in a node. 

Each tree node, except the root, has an associated rule according to which compounds fall into 

this node. The difference between mean activity values in the child ( child

meanA ) and parent ( parent

meanA ) 

nodes represents a local increment (LS) of the contribution of the corresponding descriptor (Figure 

12). 
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Thus, summation of the average activity value in the root node and all local increments in 

nodes on the path from the root to the leaf node results in a predicted activity value of a compound 

reached this leaf node. 
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Figure 12. Example of calculation of local increments of descriptor contributions where Amean: 

mean activity value of training set compounds in the node; S: descriptor; LS: local increment in a 

compound activity caused by descriptor S. 

 

To determine the overall contribution of an individual descriptor for a particular compound, 

one should summarize local increments of this descriptor included in the rules of nodes, which 

contain given compound in all trees. The final sum is divided by the overall number of trees in the 

forest. 
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CM,k is a contribution of k-th descriptor in activity of a molecule M; LSk,j is a local increment of k-th 

descriptor associated with j-th node, which contain the molecule M; m is total number of nodes in all 

trees containing molecule M; T is the total number of trees in RF model. 

Intercept (the absolute term, A0) is calculated by averaging of average activity of training set 

molecules in root nodes (Aroot,t) of all trees (T). 
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It can be easily demonstrated that the sum of the absolute term (A0) and all local increments 

(CM,k) of all descriptors (K) for a particular compound M will be equal to the activity value predicted 

by the forest (AM,pred). 
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Thus, descriptor contributions are additive for an individual compound, but their actual values 

can be different for different compounds. 

The calculated descriptor contributions can be analyzed in the same way as regression 

coefficients of linear models. In the case of fragmental descriptors their contributions can be equally 

distributed among all atoms belonging to corresponding fragments and the calculated atomic 

contributions from different fragments can be summed up to get the final atom contribution which is 

easy to depict on a structure for the subsequent analysis. 

We demonstrated the applicability of this interpretation approach on the task of modeling of 

ligand affinity for 5-HT1A receptors. We collected the set of 347 ligands of 5-HT1A receptor with 

associated pKi values. All compounds belonged to derivatives of arylpiperazines of the general 

formula: 

 

where Ar was various aryl groups; L – polymethylene linker chain with 1-6 carbon atoms; T – 

diverse terminal groups mainly represented by amide and imide moieties comprising a hydrophobic 

part. For more detailed description of the dataset one may refer to the paper 38. 

For modeling we used 2D simplex descriptors which are the counts of tetraatomic fragments of 

fixed topology and composition 14, 15 (Section 1.1). Therefore, we could recalculate atomic 

contributions from calculated contributions of descriptors. 7800 descriptors were calculated in total. 

For the comparison purpose we built a partial least square (PLS) model which is easily interpretable 

through regression coefficients39. These regression coefficients represent contribution of individual 

descriptors which can be recalculated into atomic contribution by the procedure described above. We 

used 5-fold cross-validation to estimate predictive of models. 

To build the PLS model we removed highly correlated descriptors and performed variable 

selection that remained 72 simplex descriptors. The final model has the reasonable predictive ability 

R2
5CV=0.64. To build the RF model we tuned the number of trees and variables used in each split by 

evaluating out-of-bag predictions. The final RF model was built using mtry 2500 and consisted of 750 

trees. It has comparable predictive ability to the PLS model, R2
5CV=0.70. 

First, we compared calculated descriptor contributions from the RF models with their 

importance calculated by the permutation procedure suggested by Breiman. We expected that 

descriptors having high positive or negative contributions would have high importance score. To 

verify this hypothesis we calculated correlation between importance scores and absolute contribution 

values of corresponding descriptors. They demonstrated very good concordance, RPearson = 0.98 and 

RSpearman = 0.90, thus, supporting the validity of the developed interpretation approach. 
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Second, we recalculated atom contributions from PLS and RF models and calculated 

contribution of individual fragments Ar, L and T by summation of contributions of corresponding 

atoms. Comparison of average contributions of individual fragments demonstrated good concordance 

between estimates obtained from two models. The correlation was 0.88 (Figure 13). This also 

supports the conclusion about validity of the developed interpretation approach. 

 

Figure 13. Calculated average contributions of molecular fragments affinity for 5-HT1A receptors from 

PLS and RF models (only fragments which occurred 3 or more times are displayed; RPearson=0.88). 
 

We also ranked fragments of each group Ar, L and T according to their calculated 

contributions and compared the revealed trends of structure-activity relationships with expert 

knowledge and available pharmacophore hypotheses. We found good correspondence between the 

expected relationship and the relationships retrieved from the models. For Ar fragments the ortho-

substituted phenyl groups with p-electron donating substituents were the most favorable whereas 

para-substituted phenyl had large negative contribution (Table 4). These observations are supported 

by findings of other authors that substituents in ortho-position, which are able to form H-bonds, are 

favorable for activity of 5-HT1A receptor ligands 40, 41 and substituents in para-position are 

unfavorable due to steric clashes 42. 
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Table 4. Ar fragment contribution to affinity for 5-HT1A receptors calculated from PLS and RF models. 

Ar Average PLS contribution (range) Average RF contribution (range) 

 

0.84 (0.62 – 1.06) 0.27 (-0.17 – 0.58) 

 

2-OCH3 0.18 (-0.08 – 0.35) 0.24 (-0.28 – 0.60) 

2-Cl 0.03 (-0.13 – 0.13) 0.04 (-0.23 – 0.27) 

3-Cl -0.04 (-0.09 – 0.01) 0.07 (-0.26 – 0.37) 

H -0.06 (-0.21 – -0.03) -0.02 (-0.32 – 0.29) 

3-CF3 -0.09 (-0.31 – 0.01) 0.11 (-0.36 – 0.55) 

 

-0.11 (-0.42 – -0.05) 0.04 (-0.09 – 0.18) 

 

2-CH3 -0.66 (-0.98 – -0.37) -0.04 (-0.40 – 0.26) 

4-F -0.73 (-1.03 – 0.41) -0.55 (-0.92 – 0.39) 

4-NO2 -0.94 (-1.24 – 0.08) -0.66 (-1.01 – 0.31) 

4-Cl -0.96 (-1.18 – -0.02) -0.66 (-0.87 – 0.14) 

 

For the linker L we observed a clear trend that 4 and more methylene groups in the chain are an 

optimal length resulted in high affinity for 5-HT1A receptors that corresponds to experimental data 43. 

For terminal groups T it was previously established that they have positive steric influence on the 

affinity for 5-HT1A receptors 42, 44. Our findings fully correspond to these observations. Relatively 

small hydrophobic groups (adamant-1-ylcarbonylamino, 1,3-dioxo-tetrahydro-pyrrolo[1,2-

c]imidazol-2-yl, 1,3-dioxo-tetrahydro-imidazo[1,5-a]pyridine-2yl and phtalimidyl) have positive 

contributions whereas larger groups, like 3-benzhydrylidene-2,5-dioxo-pyrrolidin-1-yl and 3-fluoren-

9-ylidene-2,5-dioxopyrrolidin-1-yl had negative contributions. Overall, interpretation outputs were in 

agreement with pharmacophore hypotheses of ligands of 5-HT1A receptors 45-47. Active molecules 

should have positively charged nitrogen distant from aromatic and carbonyl groups on 4.9Å and 

4.3Å, correspondingly (Figure 14). This confirms that the optimal linker moiety should include at 

least 4 methylene groups. 

 

 

Figure 14. Tricentric pharmacophore model of 5-HT1A ligands 47. 

 

Additionally we studied interpretation of a random model. We applied Y-scrambling and built 

RF model. It demonstrated no predictive ability, R2
OOB = -0.17. Interpretation of this model using the 
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developed approach resulted in fragment contributions which did not correlate with contribution 

calculated from the previous model (R2 = -0.02). 

The suggested approach was implemented as a free program 

(http://www.qsar4u.com/pages/rf.php) and makes interpretation of RF models straightforward. The 

analysis of calculated contributions of descriptors is similar to the analysis of regression coefficient 

in linear models. In the case of using fragment descriptors this allows to retrieve contributions of 

substructures and to establish the most important ones that can guide further structural optimization 

of these compounds. Later, this approach was extended to classification models by Palczewska et al 

and implemented in rfFC package for R.48 

 

2.2. The universal approach to structural interpretation of QSAR models 

 

All interpretation approaches developed before used the following paradigm – calculate or 

retrieve contributions of descriptors from a model and then, if possible, map them back on a structure 

to get information about contribution of individual fragments in a molecule. We call it 

“model⟶descriptors⟶structure” paradigm49. This creates the major obstacle to perform structural 

interpretation – the necessity to use interpretable descriptors, mainly fragmental descriptors, whose 

contributions can be transferred to a structural level. 

We suggested an interpretation approach, which is agnostic to machine learning methods and 

descriptors50. It designated the appearance of a new interpretation paradigm (“model⟶structure”) 

where contributions of structural moieties are calculated directly from a model skipping the step of 

calculation of contributions of descriptors and their interpretation or transferring on a structural level. 

The idea behind is to virtually remove a fragment of interest from a molecule, predict 

activity/property for the new structure with a removed fragment and subtract this value from the 

predicted activity/property of the initial molecule. In such a way we “mask” a part of a molecule 

from a model and calculate the difference between predicted activity/property values (Figure 15). In 

such a way we can estimate contribution of arbitrary groups of atoms (even not directly connected) 

or even individual atoms. The only limitation of this approach is the ability of descriptors/models to 

encode structures consisting of disconnected parts, which can appear after removal of a linker group. 

 

http://www.qsar4u.com/pages/rf.php
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Figure 15. The scheme of structural and physicochemical interpretation of QSAR models. A and B 

are descriptors of compounds A and B. Subscripts E, H, D, HB designate subset of descriptors 

encoding electrostatic, hydrophobic, dispersive and H-bonding interactions. 

 

This approach is applicable to regression as well as classification tasks. In the case of 

regression models the predicted property/activity value can be directly used for calculation of a 

difference (contribution). Thus, calculated contributions have the same units as a modeling property. 

A positive contribution designates that a fragment increases the modeling property/activity and a 

negative contribution is observed if a fragment decreases it. In the case of classification models we 

used as a predicted value the probability to belong to the active class. Thus, the difference 

(contribution) indicates how much a particular fragment increases the probability of a molecule to 

become active and calculated contributions are always within the range from -1 to 1. 

The suggested structural interpretation approaches was validated on multiple data sets 

representing regression and classification tasks. Here, we will illustrate how it works on some of 

them. For more detailed description and examples one may refer to our publications 50, 51. 

 

To compare the suggested structural interpretation approach with well-established ones we 

built RF, PLS, SVM and GBM (Gradient Boosting Method) models for the classical data set, which 

was used by Free and Wilson to estimate contributions of individual fragments using linear models52. 

The data set was small and consisted of 29 compounds (Figure 16). To build models we used 2D 

simplex descriptors (Figure 2). Due to the small size of the data set five-fold cross-validation 

performance of all models was poor, R2
5CV = 0.26-0.43. The consensus model calculated by 

averaging predictions of individual models was also poor, R2
5CV = 0.38. However, this was expected 

and we interpreted these models. Calculated contributions of individual fragments were compared 

with those obtained by Free and Wilson in their seminal paper52. For all models, linear (PLS) and 

non-linear ones (RF, GBM, SVM), we observed good correspondence of calculated contributions 

with those ones calculated by Free and Wilson from their linear model (Figure 16). This illustrates 

convergence of different interpretation approaches that additionally supports validity of 

interpretation outputs. 
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R = H, CH3;  

R1 = H, CH3, C2H5;  

R2 = N(CH3)2, N(C2H5)2, 

morpholino;  

R3 = H, phenyl;  

R4 = nothing, −CONH– 

 
Figure 16. Structures of the Free-Wilson data set and contributions of the fragments (M is a number 

of molecules comprising a particular fragment). 

 

We studied how different models and descriptors affect interpretation outputs. We built PLS, 

SVM and RF models for the solubility data set consisting of 1033 compounds (regression task) and 

SVM and RF models for the mutagenicity data set consisting of 4361 compounds (classification 

task) using 2D simplex and all 2D Dragon descriptors 50. 2D Dragon descriptors included 

topological, constitutional, connectivity, informational, 2D autocorrelations, molecular properties 

and others. We chose Dragon descriptors because they were commonly used in chemoinformatics 

and some of them were non-interpretable making models trained on them non-interpretable as well. 

 

Table 5. QSAR models of solubility (logS) 50. 

Model  
SiRMS Dragon 

R2
CV  RMSE  R2

CV  RMSE  

PLS  0.84  0.82  0.91  0.60  

RF  0.88  0.71  0.91  0.62  

SVM  0.87  0.72  0.92  0.59  

 

Table 6. QSAR models of mutagenicity 50. 

Descriptors  Model  Balanced accuracy  

SiRMS  
RF  0.817 

SVM  0.800 

Dragon  
RF  0.816 

SVM  0.793 

 

All models demonstrated the high predictive ability (Table 5 and Table 6). Thus, we expected 

that interpretation of these models would result in similar outputs. The only issue of Dragon 
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descriptors was inability to calculate them for disconnected structures. This made impossible to 

calculate contributions of linker moieties. Thus, for models trained on Dragon descriptors we 

estimated contributions of terminal groups only. In all cases we observed very good correspondence 

of calculated fragment contributions across models trained using different descriptors and machine 

learning methods (Figure 17 and Figure 18). The estimated contributions also corresponded to expert 

knowledge. Thus, differently substituted aromatic groups decreased solubility of compounds whereas 

ionogenic and polar groups (-N(CH3)2, CH2OH, -SO2NH2, etc) improved it or affect solubility only 

slightly (Figure 17). For interpretation of mutagenicity models we calculated contributions of known 

toxicophores and detoxicophores (Figure 18). As expected, toxicophores had positive contribution 

values and thus increased probability of compounds to be mutagenic. In particular, high contributions 

of alkyl-O-N=O, which were close to 1, indicated that introduction of this group into a molecule will 

make it mutagenic with very high probability. Such fragments can be considered “activity triggers” 

or “emerging patterns”, because substantially change activity of compounds. On the other hand, 

some fragments such as aryl-SO2NH2 can substantially decrease probability of a compound to be 

mutagenic (Figure 18). 

 

Figure 17. Average contributions of fragments to compound solubility calculated from models 

trained on simplex (SiRMS) and Dragon descriptors. 

 

Figure 18. Average contributions of fragments to compound mutagenicity calculated from models 

trained on simplex (SiRMS) and Dragon descriptors. 
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We implemented interpretation of QSAR models in the automatic modeling pipeline available 

as an open-source Python package spci with graphical user interface 

(https://github.com/DrrDom/spci) and the complimentary R package rspci 

(https://github.com/DrrDom/rspci) which facilitates analysis of interpretation output. We also 

provide a basic web-application https://spci.imtm.cz. 

 

2.3. Physicochemical interpretation of QSAR models 

 

The suggested approach to structural interpretation answers the question “how a fragment 

influences modeling property/activity”, but it does not answer the question “what is a reason of the 

observed contribution of a fragment”. To answer the latter question we suggested the extension of 

the interpretation scheme51. If we encode molecules by descriptors representing different 

physicochemical properties, e.g. lipophilicity, partial atomic charges, hydrogen bonding, etc, we can 

retrieve contribution of fragments in terms of individual physicochemical properties. To achieve this 

we virtually remove a fragment in terms of a particular type of descriptors only, e.g. H-bonding, 

predict activity for a molecule with a “masked” fragment in terms of H-bonding and calculate the 

difference between predicted activity for the initial molecule and a “masked” one. The difference 

will represent the contribution of a removed fragment in terms of their H-bonding ability (Figure 15). 

This physicochemical interpretation imposes some restrictions to interpretation – it is only applicable 

to models built using descriptors with clear physicochemical meaning and interpretation, but it may 

provide deeper insights on the underlying property. 

Simplex descriptors are perfectly suitable for such physicochemical interpretation, because 

they allow to label atoms by different physicochemical properties. Usually, we use (i) partial atomic 

charges to represent electrostatic interactions, (ii) lipophilicity to represent hydrophobic interactions, 

(iii) refractivity to represent dispersive interactions and (iv) H-bonding. Thus, every compound is 

represented by four sets of simplexes descriptors which are concatenated. 

Here, we will represent one example of application of physicochemical interpretation for 

QSAR models of permeability of the blood-brain barrier (BBB). For more examples one may refer to 

the paper51. The data set was collected from 178 compounds which permeate BBB and 143 non-

permeable ones. All compounds were checked to pass BBB mainly by passive diffusion. GBM, RF 

and SVM models were built using 2D simplex descriptors labeled by partial charge, lipophilicity, 

refractivity and H-bonding. A consensus model was created by averaging predictions of three 

individual models. All models have comparable predictive performance estimated by five-fold cross-

validation (balanced accuracy = 0.75-0.77). 

Fragments that represent rings and common functional groups were chosen for interpretation of 

QSAR models. The overall fragment contributions calculated from different models were in a good 

https://github.com/DrrDom/spci
https://github.com/DrrDom/rspci
https://spci.imtm.cz/
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agreement with each other (RPearson = 0.78-0.90). Thus for analysis we used contributions calculated 

from the consensus model. The retrieved structure-activity relationship trend was the following: CF3, 

phenyl and halogens mostly enhanced permeability, whereas thiazole, amide, carboxy, nitro and 

many other lower permeability of compounds (Figure 19). 

 

 

Figure 19. Distribution of fragment contributions calculated using the consensus BBB model. Only 

fragments occurring in at least 10 compounds are shown. Numbers in brackets: M is the number of 

compounds containing a fragment, and N is the number of fragments across the whole data set (some 

compounds have several identical fragments, and their contributions were estimated separately). 

Asterisks refer to statistical significance calculated by the two-sided Wilcoxon rank test (p value): 

***, p < 0.001; **, p < 0.01, *, p < 0.05. 

 

Fragments with wide distributions of contributions have a particular interest. This means that 

the contribution of such fragments is highly context dependent. For example, contributions of 

aliphatic hydroxy group are close to zero for the majority of compounds, but there were multiple 

outliers. The deeper analysis revealed that these were benzodiazepine derivatives. Derivatives 

bearing a hydroxyl group were indeed less permeable than the parent compounds (Figure 20). Thus, 

models correctly recognized the effect of the hydroxyl group in these cases and interpretation could 

reveal this influence. This is an example of “activity triggers” – groups which have large 

contributions and can substantially change activity of compounds. Although this particular case can 

be also captured by matched molecular pairs analysis, for more complex and diverse data sets, where 

the number of matched molecular pairs will be low or none, interpretation of QSAR models can 

bring a lot of new information which cannot be retrieved by other methods. 
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Figure 20. Consensus contributions of hydroxyl groups to BBB permeability in benzodiazepine 

derivatives. Addition of a hydroxyl group to alprazolam and midazolam makes compounds non-

permeable through the blood-brain barrier that was correctly captured by QSAR models. 

 

Physicochemical interpretation of the consensus QSAR model revealed that possible formation 

of hydrogen bonds is the most important factor in low permeability of compounds containing 

thiazole, nitro, and carboxylic groups (high negative H-bonding contributions, Figure 21). This can 

be explained by strong interactions of such groups with water medium and the necessity of 

desolvation before passage through a membrane. At the same time, CF3 group (a moderate positive 

H-binding contribution) is unlikely to form H-bonds, and this is preferable for BBB permeability. 

The carbamoyl group has a large negative contribution of electrostatic factors, which means it may 

have an unfavorable distribution of partial atomic charges. These findings are in a good agreement 

with earlier established rules and accumulated knowledge. A number of studies have indicated a 

negative effect of a large number of H-bond donors/acceptors, which should be less than 3. At the 

same time, the topological polar surface area should be less than 80Å2.53-56 
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Figure 21. Median fragment contributions of different physicochemical factors estimated from the 

consensus BBB model. Only fragments occurring in at least 10 compounds are shown. Definitions of 

M and N were given in the Figure 20 caption. 

 

The described approach was contributed to the open-source Python package spci 

(https://github.com/DrrDom/spci). 

 

2.4. Deconvolution of influence of chemical context on fragment contributions 

 

As we showed in the previous sections the contributions of fragments can be context 

dependent. Here is another example. The contributions of ester groups to BBB permeability of 

pseudocacaine differ depending on their context (Figure 22). Context dependence of fragment 

contributions is a natural attribute of modeling of non-additive properties and it should be observed 

regardless of a model or an interpretation approach used. Wide distributions of calculated fragment 

contributions were also observed for RF and PLS models of 5-HT1A ligands (Table 4). Visual 

inspection to identify specific context features explaining high dispersion of fragment contributions 

is very tedious and laborious for large data sets. Therefore, it is important to develop an automatic 

pipeline which may assist in the task of deconvolution of the effect of structural context. 

 

Figure 22. Contribution of hydroxyl groups of pseudocacaine in permeability of the blood-brain 

barrier. 

https://github.com/DrrDom/spci
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We suggested an approach which can be used on top of the outputs of interpretation 

approaches calculating contributions of individual fragment, like those ones described above. When 

one aggregates contributions of the same fragment in different molecules the following patterns can 

be observed. If a distribution of fragment contributions is narrow this can mean that the context is the 

same or it does not influence the contribution of the fragment. If the distribution is wide there can be 

two possible cases – a wide distribution with a single peak or with several ones. Both these cases 

may indicate significant context dependence, but only in the second case this can be deconvoluted 

relatively easy. We suggested a protocol to analyze distribution of fragment contributions which 

consists of several steps57 (Figure 23): 

1) we establish existence of several peaks (clusters) in a distribution by applying Gaussian 

Mixture Modeling (GMM) 

2) we choose a cluster (usually with the  highest average contribution) and label all compounds 

comprising fragments from this cluster as “active” whereas all other compounds from other 

clusters as “inactives” 

3) apply SMARTSminer 58 to the newly created data set to automatically establish generic 

patterns encoded by SMARTS which discriminate “actives” from “inactives”. 

 

 

Figure 23. Workflow of the analysis of the context-dependence of fragment contributions. 

 

We demonstrated applicability of the developed approach on the data set of 1984 compounds 

with measured toxicity (pIGC50) against Tetrahymena Pyriformis. SVM, RF and GBM models, 

which were built using 2D simplex descriptors, had comparable predictive performance according to 

five-fold cross-validation as well as the consensus model obtained by averaging predictions of 

individual models, R2
5CV = 0.73–0.77. Therefore, for further analysis we used only the consensus 

model. To get fragments we exhaustively fragmented all compounds by breaking up to three single 
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acyclic bonds. Fragments which were occurred less than 10 times were removed. For the remaining 

311 fragments we calculated contributions using the previously described universal interpretation 

approach and analyzed their distributions by GMM (Figure 24). For further analysis we chose 118 

fragments, where two or more clusters were detected, and 39 fragments had narrow distributions. 
 

 

Figure 24. Decision tree illustrating the workflow for the analysis of fragments contibution to 

Tetrahymena Pyrofirmis toxicity. Green boxes contain fragments to be analysed. The upper green 

box contains the fragments of the major interest to this study since several clusters were found in 

their distributions. The lower green box contains fragments having narrow distributions with no 

clusters (standard deviation <= 0.25). 

 

The largest average contributions (around 1.0–2.0) amongst 39 fragments having narrow 

distributions corresponded to various aromatic fragments, e.g. 4-bromophenyl, benzoate group, etc. 

This can be explained to a large part by their high lipophilicity and hence the implicit relationship to 

non-polar narcosis. However, some of them, such as benzaldehyde derivatives, can be reactive. 

Halogen atoms except fluorine had large median contributions, F (0.25) < Cl (0.52) < Br (0.72) 

< I (0.91). However, in the case of Cl, Br and I a long right tail was observed on distribution 

diagrams, which was identified as a separate cluster by GMM (Figure 25). Application of 

SMARTSminer to indentify patterns distinguishing compounds in two clusters revealed that halogen 

atoms had much greater contributions if they occurred in the activated environments: α-haloketones, 

esters, amides or alkenes. Halogens with lower contributions from the first clusters were other 

aliphatic or aromatic derivatives (Table 7). 

The findings for bromine and chlorine fragments were in accordance with the understanding 

that activated halogens (e.g. adjacent to an ester or other unsaturation) are electrophilic in nature and 

will have a strong influence on toxicity 59. Specifically, the reactivity of α-haloactivated compounds 

occurs as a result of their reactivity in Phase II enzymes. It is mediated by a SN2-type of transition 

state with the partially negative charged sulfur atom from the thiol groups of glutathione S-
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transferases. It was noted that the halo-substituted compounds of this type were one of eight classes 

of SN2 electrophiles 60. 

 

 

Figure 25. Distributions of contributions of halogens (Cl, Br, I) with regard to their toxicity to 

Tetrahymena pyriformis. Histograms and dashed lines represent observed distributions of fragment 

contributions. Solid colored lines represent Gaussians detected by GMM. 

 

Table 7. Examples of SMARTS patterns and molecules corresponding to each cluster detected by 

GMM for chlorine, bromine and iodine (Figure 25). SMARTS patterns matched in structures are 

colored in red. For iodine no SMARTS patterns were identified due to the small number of 

compounds in clusters. 

  Cluster 1 Cluster 2 

Cl 

Mean contribution ± 

standard deviation 
0.47 ± 0.24 1.16 ± 1.02 

Coverage 95% 5% 

SMARTS  
A[CD3H0](CCl)=[OX1-0]; 

C(Cl)[CD3H0] 

Examples 

  

Br 

Mean contribution ± 

standard deviation 
0.64 ± 0.24 1.69 ± 0.79 

Coverage 77% 23% 

SMARTS  
A[CX4][CX3]=[C,O]; 

Br[CX4][CX3] 

Examples 

  

I 

Mean contribution ± 

standard deviation 
0.83 ± 0.27 2.72 ± 0.46 

Coverage 87% 13% 

SMARTS   

Examples 
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Similar results to halogen atoms were obtained for other fragments represented by several 

clusters. Thus, it was identified that methylcarbonyl groups had contributions mainly within the 

range -0.5 to 0.5, but if they were conjugated with a double or triple bond or a halogen atom the 

contribution of this group substantially increased. More examples can be found in the article 57. 

SMARTSminer was also applied directly to the whole data set in order to directly find possible 

toxicophoric patterns without QSAR modeling. Since the SMARTSminer approach is only suitable 

for working with classification tasks, two subsets of compounds were selected based on thresholds: 

the “negative” set with 500 compounds having pIGC50 <= 2.5 and the “positive” set with 406 

compounds having pIGC50 >= 5. No patterns were found by running SMARTSminer with the chosen 

settings for positive and negative support values, 0.7 and 0.3 correspondingly. This means that there 

were no patterns detected on at least 70% of molecules from the “positive” set and at most in 30% on 

molecules from the “negative” set. Decreasing positive and negative thresholds to 0.6 and 0.2, 

respectively, helped retrieve about 100 patterns. They mostly matched aromatic and some 

heteroaromatic substructures which were abundant in the “positive” set of compounds (Figure 26) 

and less frequent in the “negative” set. 

 

 

 
Figure 26. Top-ranked discriminative patterns found by SMARTSminer to discriminate high from 

low toxicity compounds and examples of matched compounds from the „positive“ set. 

 

Further decrease of support values did not help; numerous general patterns matching mainly 

aromatic substructures were found. The patterns identified by our approach could not be found by 

SMARTSminer directly because all of them have very low positive support values (<0.1). Poor 

performance of SMARTSminer can be explained by the high structural diversity of the compounds 

in the data set and different, or mixed, mechanisms of toxic action. This additionally highlighted the 

unique ability of interpretation of QSAR models to reveal structure-activity relationships in complex 

and diverse data sets. 

The described approach was implemented in R language and contributed to the R package 

rspci (https://github.com/DrrDom/rspci). 

 

https://github.com/DrrDom/rspci
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2.5. Benchmarking interpretation of QSAR models 

 

Wide application of deep neural networks for QSAR modeling stimulated interest to 

interpretation approaches to understand and explain model decisions. Modern deep learning 

approaches frequently use end-to-end modeling, take a molecular graph or SMILES as input, create 

own internal representation (embedding) and establish a correlation with a modeling property. This 

makes many of commonly used approaches not applicable and, thus, requires specific interpretation 

approaches developed for these methods 61. There are multiple post hoc interpretation approaches 

developed specifically for neural network models, e.g. Layer-wise Relevance Propagation (LRP)62, 

DeepLift63, CAM64, GRAD-CAM65, etc. Some deep learning approaches are interpretable by design, 

e.g. attention-based neural networks66. Weights assigned by the attention layer can be interpreted as 

importances of corresponding features. In graph-based networks these features can be atoms and thus 

importance of individual atoms within a molecule can be established. Machine learning agnostic 

interpretation approaches can be applied to modern deep learning models too. Examples of such 

feature-based approaches include Integrated Gradients67, Shapley values68, 69, which return a 

contribution of individual descriptors. The latter approaches belong to the old paradigm 

“model→descriptor→structure” with the consequent limitations – these approaches are applicable to 

models built with interpretable descriptors only. 

Despite the fact that multiple interpretation approaches have been developed and new ones 

constantly appear there are no suitable benchmarks to evaluate their applicability to interpretation of 

QSAR models. Often authors demonstrate applicability of their interpretation approaches on well-

studied end-points like lipohilicity, solubility or toxicity where relevant patterns are well known 70. 

Interpretation is frequently performed for pre-defined motifs or on a very limited number of 

considered examples 50, 70, 71. For example, authors visually inspect a subset of molecules and 

compare calculated contributions with expert knowledge. Such non-systematic evaluation can be 

biased by a human expert and the choice of inspected molecules. Real data sets may have hidden 

biases which are difficult to control, some properties may depend on multiple factors or the response 

can be caused by different mechanisms of action. All these issues complicate proper validation of 

interpretation approaches based on real-world examples. 

Synthetic data sets are more reasonable to evaluate interpretation approaches. They are 

designed in such a way that end-point values are pre-defined according to some logic according to 

true patterns chosen by a designer. These data sets can be used to investigate the ability of models to 

capture the introduced logic and the ability of interpretation approaches to retrieve it. 

Two recent studies used artificial data sets. The study of Sheridan was mainly focused on 

comparison of interpretation of models built using different conventional descriptors and machine 

learning methods 72. The author used similarity maps 73 for model interpretation which provides atom 
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contributions (colors) and which is a special case of the universal interpretation approach50. Besides 

real-world datasets, two artificial, “idealized” ones were utilized. Both represented simple additive 

properties: heavy atom counts and the number of negative charges in compounds at pH 7.4. 

Regarding the impact of descriptors (D) and models (Q) on interpretation quality the author 

concluded, that “… one has to have a very high cross-validated predictivity to recover those expected 

colors, and not all D/Q combinations are suitable”. Another study utilized Integrated Gradient 

interpretation method67. Authors used graph convolutional models and their interpretation produced 

atomic contributions. They created 16 synthetic classification data sets. Compounds were retrieved 

from ZINC database and satisfied to particular positive or negative SMARTS patterns combined by 

Boolean operators, e.g. compounds were labeled as active if they comprise a naphtyl group and no 

amino groups. The goal of the study was to investigate the ability of models to retrieve atoms 

corresponding to these positive and negative patterns and it was demonstrated that models could not 

always recognize true atoms correctly. Unfortunately, authors did not provide data sets to enable 

comparative studies. Moreover, those data sets represented only one possible scenario of structure-

property relationship where the property of compounds depended on local chemical context encoded 

by SMARTS that is not always relevant to actual structure-activity relationships observed in drugs 

and biologically active compounds where distant groups can have a cooperative effect which cannot 

be easily encoded by a single SMARTS pattern. 

We developed synthetic data sets with pre-defined patterns determining end-point values and 

controlled possible biases in data sets74. Creation of these data sets will enable systematic evaluation 

of interpretation approaches to validate their ability to retrieve structure-property relationships 

captured by QSAR models, because calculated contributions of atoms or fragments can be compared 

with expected values determined by the incorporated logic (“ground truth”). We developed 

regression and classification data sets, which represent different logics and levels of end-point 

complexity. 

1. Simple additive end-points, where specific contributions were assigned to individual atoms 

and the sum of atom contributions determined a compound property value. This represents 

“idealized” additive properties. There were three data sets: (i) N data set where the end-point was the 

count of N atoms; (ii) N-O data set – the end-point was the count of N atoms minus the count of O 

atoms; (iii) N+O data set – the count of N plus O atoms divided by two, but the number of N and O 

atoms for each molecule was the same (this is the special case to study interpretability if there are 

correlated features in a data set). 

2. Additive end-points depending on a local chemical context, where contributions were 

assigned to groups of atoms and the sum determined the property value of a compound. This is 

related to molar refractivity or lipophilicity modeling, where group contribution methods are 

successfully applied75, 76. There were two data sets where end-points were: (i) the presence of at least 
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one amide group matched by SMARTS NC=O (classification task) and (ii) the count of such amide 

groups (regression task). 

3. Pharmacophore-like settings, where compounds were labeled as “active” if they had a 

specific 3D pattern. For simplicity we chose a two-point 3D pharmacophore where an H-bond 

acceptor and an H-bond donor were on the distance of 9-10Å. This case was the most similar to real 

problems, where property depends on distant features and their mutual position in 3D space. 

Compounds were chosen by randomly picking molecules from the curated ChEMBL23 

database to get 10000 molecules in every data set, which were split on train and test sets (70/30). 

Structures of data sets were additionally controlled to do not have obvious correlated patterns to 

reduce a possible hidden bias. All six data sets were balanced (the number of “active” and ‘inactive” 

molecules was equal) or had the distribution of end-point values close to the normal distribution. 

Structural interpretation retrieves contributions of particular atoms or fragments. To 

quantitatively measure interpretation performance we suggested to use several metrics. AUC is an 

integral metric which demonstrates how well relevant patterns are ranked over others within a 

particular molecule. We calculate AUC values for individual molecules that shows how well true 

atoms ranked in a molecule. To get the final score we averaged AUC values for all considered 

molecules. In QSAR interpretation context this metric was first used by McCloskey et al67. 

The weakness of AUC is that it is an integral measure, which accounts for both relevant and 

irrelevant patterns. In practice it is more reasonable to focus only on relevant features tanked on top. 

To address this, we proposed top-n score which is calculated as follows and should be more 

stringent: 




=

i i

i i

n

m
  scoren -top

     (7) 

where ni is the total number of “positive” atoms in the i-th molecule, mi is the number of 

“positive” atoms in ni top ranked atoms according to their calculated contributions. For instance, if a 

molecule has two true patterns with expected contributions +1 and interpretation retrieved only one 

of them among top two contributing patterns, the molecule will contribute n = 2 and m = 1 to the 

equation above. Top-n is an integral characteristic of a data set and varies from 0 to 1 (perfect 

interpretation) and it is closely related to early enrichment, where only top scored patterns are 

considered to calculate performance. 

Additionally, we suggested to calculate root mean square error (RMSE) of predicted 

contributions for each molecule and averaged them across molecules in a data set to estimate 

deviation of calculated contributions from the expected values. This is less important metric, because 

proper ranking is more practically valuable than exact estimation of contributions which are 

generally unknown in real cases. 
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We applied this benchmark suite to study the previously suggested universal structural 

interpretation approach to calculate atom and fragment contributions. 

For benchmarking we built RF, SVM, GBM and PLS models based on different 2D RDKit 

fingerprints: (i) atom-pair fingerprints, which enumerate pairs of particular atoms at the topological 

distance from 1 to 30 (AP); (ii) Morgan fingerprints, which enumerate atom-centered substructures 

of radius 2 (MG2); (iii) RDK fingerprints, which enumerate all possible substructures with atom 

count from 2 to 4 (RDK) and (iv) topological torsion fingerprints, which enumerate all possible 

linear substructures with four atoms (TT). AP, MG2 and RDK fingerprints were also used in their 

binary (bit vector) form of length 2048 (bAP, bMG2, bRDK). We also built graph convolution (GC) 

models, which use end-to-end modeling and for which we specifically implemented the same 

interpretation approach and contributed it to the deepchem repository.77 

There was a strong or moderate correspondence between AUC and top-n interpretation 

measures and model predictive abilities for almost all data sets (Figure 27 and Figure 28). This 

supports the hypothesis that interpretation performance depends on the model prediction accuracy. In 

general, atom-pairs descriptors followed by Morgan fingerprints resulted in models with the best 

interpretation performance. The dependence of interpretation performance of models from the 

machine learning methods was not obvious. Therefore, we can make a conclusion that descriptors are 

more important than machine learning methods for high quality interpretation of QSAR models. 

 

 

Figure 27. Interpretation performance (AUC) vs. model prediction accuracy. 
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Figure 28. Interpretation performance (top-n scores) vs. model prediction accuracy. 

 

The analysis of classification models for the amide data set showed that all models have nearly 

perfect predictivity (balanced accuracy on the test set ≥ 0.94), however, many of them had relatively 

poor interpretation results (AUC = 0.82-0.98, top-n score = 0.41-0.81) (Figure 27 and Figure 28). 

This can be explained by the presence of multiple true patterns in “active” molecules, making major 

impact on interpretation performance. If there are multiple identical true groups in a molecule, 

masking of one group does not change much the predicted class probability due to the presence of 

the remaining groups and therefore the contribution is close to zero. This was confirmed by the fact 

that interpretation performance for compounds containing only one true pattern was very high 

whereas for compounds with multiple true patterns it was dropped substantially (Table 8). This issue 

will be common for all similar interpretation approaches using “masking” technique if identical 

atoms/fragments are “masked” one by one and not simultaneously. 
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Table 8. Interpretation performance of selected models for the classification amide data set 

calculated for subsets of molecules having different number of amide groups. 

count of 

amide groups 

GBM / MG2 GBM / AP GC 

mean 

AUC 
top-n 

mean 

RMSE 

mean 

AUC 
top-n 

mean 

RMSE 

mean 

AUC 
top-n 

mean 

RMSE 

all 0.98 0.81 0.12 0.90 0.73 0.14 0.92 0.75 0.14 

0 - - 0.03 - - 0.02 - - 0.02 

1 1 0.98 0.12 0.96 0.89 0.17 1 0.98 0.2 

2 0.94 0.69 0.4 0.77 0.58 0.42 0.81 0.56 0.36 

3 0.9 0.65 0.51 0.75 0.6 0.53 0.66 0.44 0.52 

4 0.87 0.62 0.57 0.6 0.45 0.57 0.53 0.39 0.57 

5 0.8 0.44 0.58 0.57 0.47 0.58 0.54 0.33 0.57 

6 0.66 0.55 0.67 0.49 0.39 0.67 0.61 0.48 0.67 

 

The classification amide data set most notably demonstrated the weakness of AUC as the 

measure of interpretation accuracy. AUC indicates the ability of models to rank true pattern high. 

However, there is a small difference in AUC values between models which score true patterns on top 

and those which score true patterns high but not exactly on top. In the latter case it may be difficult to 

identify true patterns among other highly scored ones. For example, AUC for GBM and RF models 

trained on Morgan fingerprints were 0.98 and 0.94 respectively, but corresponding top-n scores were 

0.81 and 0.60 indicating that probability to find true patterns among the top scored ones was much 

higher for the GBM model. Therefore, the proposed top-n score is a more practically relevant and 

robust measure of interpretation accuracy. 

We specifically studied interpretation of models having correlated features using the designed 

N+O data set. In this case the count of N and O atoms were the same for all molecules. There are 

two possible outputs for this data set because to get perfect predictions a model can capture only one 

of correlated features or assign comparable contributions to both of them. In the former case 

interpretation may be incomplete and misleading. Therefore, it is useful to know how different 

models behave in this situation. For count-based fingerprints RF and GBM models based on decision 

trees frequently prioritized one of two true correlated features but both of these patterns were ranked 

higher than non-relevant atoms. PLS and SVM models assigned mostly comparable contributions to 

N and O atoms but not always discriminate them well from other atoms. GC model also assigned 

comparable contributions to N and O atoms, but it differentiated them quite well from other non-

relevant ones. So, these properties of models should be taken into account in future interpretation 

studies. 
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Figure 29. Contributions of nitrogen, oxygen and other atoms for models trained on the N+O data 

set. 

 

The pharmacophore dataset was the hardest task and models achieved just moderate balanced 

accuracy, 0.71-0.83. Thus, it was expected that interpretation accuracy may be relatively low. The 

predictive ability of conventional models mostly depended on descriptors type. The model accuracy 

decreased in the following row: atom pairs > Morgan fingerprints > topological torsion > RDK 

fingeprints. For this data set the correlation between the model predictive ability and interpretation 

accuracy was the most pronounced (Figure 30). Several models had poor interpretation, average 

AUC values close to 0.5 (random ranking) or even lower, however the predictive ability of these 

models was moderate (R2
test ≥ 0.71). This suggests that models which are usually considered as 

acceptable according to their predictive ability may result in ranking ability of patterns close to 

random choice. Top-n scores were also low. Even for the most predictive models with balanced 

accuracy >0.8 the top-n scores were 0.43-0.57. This means that only about 50% of true 

pharmacophore centers can be identified within top 2 atoms ranked by their contributions. 
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Figure 30. Interpretation performance of models trained on the pharmacophore data set. 

 

To overcome the issue of low performance of atom-based interpretation we suggested to 

calculate contributions of fragments. This may help to identify fragments comprising relevant atoms 

and, thus, approximately locate true centers in molecules. For many applications this information 

may be enough. For example, identification of fragments containing sites of metabolism may help to 

modify corresponding molecules to avoid metabolic transformations even without knowledge about 

an exact site of metabolism. To perform fragment-based interpretation we exhaustively fragmented 

molecules by breaking up to three single acyclic bonds and kept only fragments of the size up to 7 

heavy atoms and containing not more than 40% of the total number of heavy atoms in a molecule. 

We calculated the average percentage of correct pharmacophore centers comprised in top 2 

fragments with the highest contributions. This metric directly corresponds to top-n score for atoms, 

because each “active” molecule had only two true centers (atoms). Fragment-based interpretation 

could substantially improve accuracy to detect true pharmacophore centers for models which had 

poor atom-based interpretation performance. However, performance for models with the highest 

atom-based interpretation accuracy (GBM/AP and GBM/bAP) was not increased that much (Figure 

31). So, fragment-based interpretation may be preferable for interpretation of models with the 

moderate or poor predictive ability. 
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Figure 31. Top-2 score for atom- and fragment-based interpretation of models trained on the 

pharmacophore data set. 

 

While interpretation of conventional models resulted in mostly explainable performance, 

interpretation performance of GC models raised a question. GC was among models with the highest 

predictive ability and one may expect highly accurate interpretation results. However, in some cases 

there was a large difference between interpretation performance (mainly in top-n scores) for GC and 

conventional models having the comparable predictive ability. This was observed for regression 

tasks. For example, in the case of N-O data set top-n score for GC model was 0.62 while the model 

accuracy was very high, R2
test = 0.98 (Figure 32). Conventional models with lower predictive 

performance had much higher interpretation accuracy (e.g. RF/AP has R2
test = 0.72 and top-n score = 

0.75) and, thus, conventional model better captured the true structure-property relationship. 

 

 

Figure 32. Interpretation performance of models trained on the N-O data set. Only performance to 

recognize positively contributed patterns (N atoms) are shown. Results for negatively contributed 

patterns (O atoms) were highly similar and omitted for clarity. 
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The analysis of interpretation results of GC model for the N-O data set revealed several sorts of 

misinterpreted patterns. Atoms attached to nitrogens were ranked on top (green) (Figure 33a-f). 

Sometimes nitrogens in nitro groups were misinterpreted as negatively contributing (Figure 33a). 

Aromatic carbons were frequently recognized as positive, though they were far from any nitrogen 

(Figure 33c,e). 

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 

Figure 33. Top-scored (green) and bottom-scored (pink) atoms by the GC model for the N-O data 

set. The number of highlighted top and bottom atoms is equal to the total number of „positive“ 

(nitrogen) and „negative“ (oxygen) atoms in corresponding molecules. 

 

We can suggest two possible explanations: 

1. The implemented interpretation approach is not fully suitable for GC models. It is difficult to 

prove whether a particular interpretation approach is suitable or not for a particular model, but 

comparison of interpretation performance with other models may shed some light. For classification 

tasks in contrast to regression we did not observe large discrepancy in top-n scores between GC and 

conventional models of similar predictive performance. This indirectly confirms validity of the 

chosen interpretation approach and its applicability to GC models. In future it would be reasonable to 

compare results obtained in this study with interpretation results of “orthogonal” interpretation 

approaches. 

2. Hidden bias in data sets. It is impossible to control all possible biases in data sets. 

Conventional models which had high predictive ability comparable to the corresponding GC models 

demonstrated the much better ability to identify true patterns. Therefore, an explanation may lie in 
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the nature of GC models which learn sophisticated internal representation of molecular structure to 

find correlation with a given end-point. Thus, GC models may construct overly complex embeddings 

correlated by chance with true ones and the end-point. We demonstrated on the example of N+O data 

set, that GC models assign comparable contributions to correlated features. Thus, it can be difficult 

to distinguish true patterns from correlated ones. In other words, GC models may “amplify” a hidden 

bias and capture it. This ability of GC models can bring some advantages if the underlying true 

patterns are really highly complex. However, for tasks of biological activity prediction GC models 

did not demonstrate systematically better predictivity than conventional models78. Thus, constructing 

complex internal representations may not be necessary to capture relevant structure-activity 

relationships. 

 

The benchmark data sets as well as supplementary scripts facilitating the analysis of model 

interpretation are distributed as an open-source repository - https://github.com/ci-lab-cz/ibenchmark. 

Although the benchmark suite was published quite recently it was already used by other researchers 

to investigate performance of the developing interpretation approaches.79 However, there are a lot of 

opportunities to improve the benchmark. More complex patterns can be implemented, e.g. similar to 

those used by McCloskey et al67, or more complex 3D pharmacophore patterns or a combination of 

pharmacophore patterns, to better reproduce real case scenarios. 

 

2.6. Summary 

 

This chapter described the evolution of development of approaches to interpretation of QSAR 

models. From development of model-specific approaches we passed to the universal structural 

interpretation approach which is applicable to any model regardless used machine learning method 

and descriptors. The validity of this approach was demonstrated in numerous studies. We also 

confirmed the universal applicability of the approach by implementing it for interpretation of graph 

convolution models. The development of this universal approach designated the shift from 

conventional the “model→descriptor→structure” interpretation paradigm to the new one, 

“model→structure”. In the latter case contributions of structural motifs are calculated directly from 

models skipping the step of calculation of contribution of descriptors and their interpretation. 

Switching to the new paradigm makes all models interpretable and solves the long lasting belief that 

there is a trade-off between model predictivity and interpretability.80 Thus, we argue that true “black 

box” QSAR models actually exist. 

The developed universal approach for structural interpretation was further enhanced to explain 

which physicochemical properties contribute to the effect of individual fragments and to identify 

chemical contexts which are important for high contributions of considered fragments. We also 

https://github.com/ci-lab-cz/ibenchmark
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implemented the pipeline helping to automatically identify important chemical context which can 

explain discrepancy of calculated contributions of identical fragments. 

We suggested and developed the first benchmark to evaluate approaches to interpretation of 

QSAR models. Using this benchmark we demonstrated that interpretation accuracy strongly depends 

on the prediction accuracy of models. However, in some specific cases even highly predictive 

models can result in poor interpretation. We also demonstrated in multiple examples that 

interpretation outputs are not sensitive to a used interpretation method or a model. Models built with 

different descriptors and machine learning methods mainly result in similar interpretation outputs if 

predictivity of models is comparable. However, interpretation performance may depend to some 

extent on descriptors used. 

All approaches were implemented in open-source software to support further research in the 

emerging field of interpretation of machine learning models in chemoinformatics. 
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Chapter 3. Pharmacophore representation and modeling 

 

Pharmacophore models are widely used in drug design due to their simplicity, interpretability 

and speed.81 They demonstrated the competitive ability to discover hits82, scaffold hopping83, activity 

profiling abilities84 and other applications85. Despite wide applicability of pharmacophore modeling 

the majority of available software are commercial and do not have free academic license85, 86. The 

only freely accessible programs are Pharmer87 and Pharao88 which provide virtual screening 

capabilities. There are also a few free web-applications. Pharmit is a web-based virtual screening tool 

of various databases powered by Pharmer89. PharmaGist is a web-server to create ligand-based 

pharmacophore models from a set of input ligands90. PharmMapper was designed to perform search 

among pharmacophore models retrieved from PDB ligand-protein complexes in order to identify 

possible targets for new compounds91. Recently much interest was attracted to pharmacophore 

modeling using molecular dynamics (MD) simulations that was encouraged by accessibility of high-

performance computing systems to researchers. Molecular dynamic simulations may provide more 

comprehensive information about protein-ligand interactions and help to identify potential hot spots 

and pharmacophore centers in apo-proteins85. while many approaches were suggested and 

implemented only few tools were made publicly available as a Python module, e.g. PyRod92, or as a 

web-application, e.g. Pharmmaker93. 

Our motivation was to develop open-source tools for pharmacophore modeling, which may 

complement existing ones and extend applicability of pharmacophore models. We developed 3D 

pharmacophore representation which enables alignment-free comparison of pharmacophores and 

takes into account their stereoconfiguration. Based on this representation we implemented a fully 

automatic ligand-based modeling protocol which can handle with large data sets and may identify 

pharmacophores for different binding modes. Using the same representation we enhanced MD 

pharmacophore analysis and suggested a new scoring scheme for virtual screening of ligands using 

MD pharmacophores. 

 

3.1. pmapper - 3D stereosensitive pharmacophore multiplets 

 

Our development of 3D pharmacophore multiplets94 was inspired by the work of Mason et al95 

who suggested to encode pharmacophores by sets of all possible combinations of 3 or 4-point 

pharmacophore features where each distinct triplet/quadruplet activates a fixed bit in a bit string. 

This enables fast comparison of pharmacophores and compute similarity between them. 

We consider pharmacophores as complete graphs with vertices labeled by the pharmacophore 

feature type and edges representing distances between features in 3D space. To distinguish 

enantioneric pharmacophores we implemented special treatment of stereoconfiguration. The full 



52 

algorithm is depicted in Figure 34. Pharmacophore features (N-bond donor/acceptor, positively or 

negatively charged center, aromatic and hydrophobic groups) are assigned to a conformer of a 

molecule using SMARTS patterns adapted from the work of Koes at el87. These features create a 

complete graph where distances between all pairs of features are binned with a chosen binning step 

(1Å by default). Afterwards we enumerate all possible quadruplets and for each quadruplet we 

generate a canonical signature. The quadruplet signature is a tuple consisting of two parts: one 

encoding content and topology of a quadruplet (canonical graph signature) and the other encoding 

stereoconfiguration. 

 

Content and topology encoding 

The quadruplet is considered a complete graph. One round of the Morgan-like algorithm96 is 

applied to generate canonical identifiers of features taking into account its surroundings. New feature 

labels consist of the current label of the considered feature and lexicographically sorted labels and 

binned distances to all other features in a quadruplet (Figure 34). The new feature identifiers are 

lexicographically sorted and the obtained tuple represents a canonical graph signature of the 

pharmacophore quadruplet which encodes its content and topology. 

 

Stereoconfiguration encoding 

All quadruplets can be divided into five classes based on the canonical feature identifiers 

(Figure 35) determined on the previous step. Capital letters below denote distinct feature labels and 

do not designate particular feature types. 

a) AAAA system where all features have identical canonical identifiers. This means that four 

features have identical labels and pairwise binned distances (features create a regular 

tetrahedron). A quadruplet belonging to this system is achiral. 

b) AAAB system where three features have identical canonical identifiers (A) and one feature has 

a different one (B). This system corresponds to trigonal pyramid and is achiral. 

c) AABC system where two features have identical canonical identifiers (A) and two features 

have different ones (B and C). This system is achiral because there is a plane of symmetry 

going through B and C features and the center of AA distance. 

d) AABB system where pairs of features have identical canonical identifiers (A and B). This 

system can be chiral or achiral depending on distances between pairs of vertices. The achiral 

one would have a plane of symmetry whereas the chiral one represents the case of axial 

chirality. 

e) ABCD system where all features have distinct canonical identifiers. This system is chiral. 
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Figure 34. An example of generation of 3D pharmacophore representation. 
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Figure 35. Basic chirality systems. Labels A, B, C and D designate distinct canonical feature labels, 

not a particular type of a pharmacophore feature. Labels “ha” and “hd” designate hydrogen-bond 

acceptor and donor features, correspondingly. Numbers on edges designate binned distances between 

features. 

 

The general workflow to determine configuration sign is depicted in Figure 36. All quadruplets 

belonging to AAAA, AAAB or AABC systems are assigned configuration sign 0. Quadruplets 

belonging to AABB and ABCD classes can be achiral if all features lie in the same plane. Therefore, 

first angles between all edges and corresponding planes are calculated for a quadruplet and the 

minimal angle is choosing as a measure of deviation of a quadruplet from planarity. To tolerate small 

deviations from planarity quadruplets having minimal angle less that a pre-defined threshold are 

considered planar and assigned configuration sign 0. For the remaining quadruplets configuration 

signs (-1 or +1) are assigned based on the sign of the scalar triple product. To calculate scalar triple 
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product all vertices are ranked by lexicographic ordering of features based on their canonical 

identifiers. If two features have the same identifiers (in the case of AABB system) then to break tie i) 

two features having signature A are placed in random order, ii) the feature B having the shortest 

distance to the first feature A is placed third and the remaining feature B is placed fourth (Figure 36). 

Four ranked features are represented in 3D space by three vectors connecting the top ranked feature 

with remaining ones as depicted in Figure 36. The scalar triple product is calculated and its sign 

determines the configuration of the quadruplet. 

 

 

Figure 36. The workflow to determine configuration sign of quadruplets. Labels A and B designate 

canonical feature identifiers. Numbers on edges designate binned distances. Numbers in circles are 

ranks of vertices. Labels a, b and c designate vectors in 3D space. 

 

There are special cases of trapeze-like and parallelogram-like quadruplets belonging to AABB 

class that requires a specific treatment of stereoconfiguration determination (Figure 37). These types 

of quadruplets are indistinguishable by canonical graph signatures and by the stereoconfiguration 

sign calculated as described above. Therefore, the calculated stereoconfiguration sign (S) is modified 

by summing with signum function of cosine of the angle B-A-A-B multiplied by 10 (10 for trapeze-

like and -10 for parallelogram-like). 

 

 

Figure 37. Trapeze-like and parallelogram-like pharmacophore quadruplet belonging to AABB class 

and not distinguishable by graph canonical signatures. 
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To represent a pharmacophore one can use binary or count-based representation. In binary 

representation each distinct quadruplet is hashed and activates a predefined number of bits in a fixed-

length bit string. In count-based representation all occurrences of identical quadruplet signatures are 

summed up and create a feature vector, where each item has its own name and a count. This feature 

vector can be further converted to MD5 hash to store it more compactly in a database and to be used 

for fast searching of identical or similar pharmacophores. We assume that identical or very similar 

pharmacophores within a chosen binning step will have identical hashes (feature vectors). Thus, 

identification of similar pharmacophores can be as simple as comparison of two hashes. 

Bit strings and feature vectors can be used as descriptors for machine learning models. There is 

also an option to enumerate not only quadruplets but triplets or doublets. In this case the obtained 

representation will not distinguish enantiomeric pharmacophores, but the number of elements in a 

feature vector will greatly reduced. The SMARTS patterns used for pharmacophore feature labeling 

can be fully customized and a user can create own features with new definitions. The described 3D 

pharmacophore representation was implemented as an open-source Python package pmapper - 

https://github.com/DrrDom/pmapper. 

 

3.2. Automated ligand-based pharmacophore modeling protocol 

 

We implemented a fully automatic pipeline which takes a data set of ligands as input and return 

a set of pharmacophore models with their validation scores. Its main features are speed, the ability to 

identify pharmacophores for different binding modes and automatic validation of generated models 

on the hold-out set of compounds. The pipeline consists of several stages. 

Training and test sets formation 

A data set of active and inactive compounds can be large and it can be computationally 

infeasible to use all available compounds for model development. Therefore, a representative subset 

of active and inactive compounds should be selected for model training. 

Two strategies of training set creation were implemented. The first strategy assumes that all 

active compounds have the same binding mode. Active and inactive compounds are clustered 

separately using Butina clustering97 and 2D pharmacophore triplets both implemented in RDKit21 

(Figure 38). Centroids of each cluster of active and inactive compounds having at least 5 compounds 

are selected to the training set. The number of compounds in the training set depends on the number 

of clusters which can be tuned by selection of different clustering cutoff values. All remaining 

compounds form the test set for external validation. 

The second strategy assumes that active compounds have different binding modes. In this case 

active and inactive compounds are clustered jointly using Butina clustering and 2D pharmacophore 

triplets. We assume that compounds from an individual cluster may have similar binding modes 

https://github.com/DrrDom/pmapper
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relatively to compounds from other clusters. From each cluster 5 active and 5 inactive compounds 

are randomly chosen and form the individual training set. Clusters containing less than 5 active 

compounds are ignored. Centroids of clusters obtained from clustering of only inactive compounds 

(similarly to the first strategy) are added to each training set in order to better represent inactive 

compounds (Figure 38). Duplicated inactive compounds in each training set are removed. Multiple 

training sets are created within this strategy and all of them are used for development of individual 

models. All compounds not included in a particular training set create a complementary test set 

which is used for external validation of selected models. 

As a result a single training set is created within the strategy I and multiple training sets within 

the strategy II. 

 

 

Figure 38. Two strategies of training set compound selection. 

 

Model development and selection 

For all compounds we enumerate all possible stereoisomers and generate up to 100 conformers 

by RDKit and optimize them in MMFF94 force field98 (Figure 39). Models are generated iteratively 

from the simplest ones to more complex. The main underlying assumption is that identical 3D 

pharmacophore hashes correspond to similar 3D pharmacophores. Thus, we do not need to superpose 

3D pharmacophores to identify whether they match each other or not as it is performed in all other 

pharmacophore modeling approaches86. 

At the beginning 3D pharmacophore hashes of all possible 4-point pharmacophores are 

calculated for training set compounds. Duplicated hashes obtained for the same compound are 

removed. Occurrence of hashes among active and inactive compounds is calculated followed by 

calculation of F-score for every 4-point pharmacophore hypothesis. For the training set formed 
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within the strategy I the pharmacophore models having F0.5 score greater or equal 0.8 are selected 

for the next iteration. This will focus on selection of more precise models rather than those ones 

which cover a larger number of active compounds. For the training set formed within the strategy II 

the pharmacophore models having F2 score equal to 1 are selected. If there are no such models than 

models having recall equal to 1 are selected. A different criterion for the strategy II was chosen 

because training sets have a smaller number of active compounds and it is assumed that these 

compounds have the same or similar binding modes, therefore it would be expected to find the model 

which covers all active compounds from the training set. Top 100 models for each strategy are 

selected independently for the next iteration. 

On the next iteration 5-point pharmacophores are generated adding one feature to the selected 

4-point pharmacophores. Hashes and their occurrences are calculated again and the best performing 

models are selected for the next iteration. This procedure continues until generated pharmacophores 

meet the abovementioned criteria. If there are no pharmacophore models that satisfy criteria after the 

current iteration, the models selected on the previous iteration are selected as final ones and are 

validated on an external test set (Figure 39). The described procedure generates the most complex 

pharmacophores which match preferably active compounds in the training set and avoid matching 

inactive ones. 

 

Figure 39. Overall workflow of pharmacophore model generation. 

 

Virtual screening 

To speed up screening it is performed in several steps that include fingerprint screening, 

isomorphic embedding and hash comparison. On the first step a hashed fingerprint of a query 

pharmacophore and dataset molecules’ pharmacophores are generated by pmapper. Fingerprints are 

used as a Bloom filter to quickly discard irrelevant pharmacophores: a candidate molecule is only 
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relevant for further screening if activated bits in a query pharmacophore fingerprint are the subset of 

activated bits of the compound. 

On the next step topology and content of a pharmacophore model is compared with a candidate 

molecule pharmacophore. A pharmacophore represented by a complete graph with binned distances 

is checked to be a subgraph (using VF2 subgraph isomorphism algorithm) of a candidate molecule 

pharmacophore. On the last step 3D pharmacophore hashes of a query pharmacophore model and 

corresponding subgraphs of candidate pharmacophores are compared for identity in order to 

determine whether they have identical topology and stereoconfiguration. 

 

Case study 

For evaluation of the developed pipeline we collected three data sets of inhibitors of 

acetylcholinestarase (AChE), inhibitors of cytochrome P450 3A4 (CYP450 3A4) and antagonists of 

adenosine 2a receptor (A2a) from ChEMBL database99 (Table 9). These targets were chosen because 

there were enough amount of data about active and inactive compounds for model development and 

there were many 3D protein-ligand complexes in Protein Data Bank for validation of obtained 

models. 

 

Table 9. Data sets used for ligand-based pharmacophore modeling. 

Data set Number of actives Number of inactives Total number of compounds 

AChE 176 (pIC50 ≥ 8) 1070 (pIC50 ≤ 6) 1246 

CYP450 3A4 138 (pIC50 ≥ 7) 548 (pIC50 ≤ 5) 686 

A2a 293 (pKi/pKd/pIC50 ≥ 7) 279 (pKi/pKd/pIC50 ≤ 5) 574 

 

We did not observe large difference for different tolerance values (0, 5 and 10 degrees) which 

should help to tolerate deviation of quadruplets from planarity and used the default value 0 for the 

further study. We built pharmacophore models using different clustering threshold (0.3, 0.4, 0.5) and 

both strategies I and II. We also combined hit lists of individual models into a consensus prediction. 

All results were obtained for test sets which were not used for model training. 

For comparison purposes we used similarity search based on 2D pharmacophore fingerprints 

implemented in RDKit. Each active compound from a whole data set was used as a query and all 

remaining compounds were ranked according to Tanimoto similarity to that reference to build ROC 

curve and calculate area under curve (AUC) value. A compound with the highest AUC value was 

selected from each data set for comparison with output of pharmacophore models. This is the most 

rigorous comparison scenario. 

Performance of individual models built using strategy I and II were similar. However, the 

former sometimes had better recall values (the percentage of known active compounds retrieved by a 

model) and the latter had better precision (the percentage of actives among all compounds retrieved 
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by a model) (Figure 40). In many cases we observed early enrichment. Consensus models 

outperformed individual pharmacophore models obtained by both strategies in terms of recall values; 

however, precision of consensus models was poorer than for individual ones. 

In many cases model performance was very close or identical to the best similarity search 

results (Figure 40). In some cases, e.g. for the CYP450 3A4 data set, performance of individual 

models obtained with the strategy I was better than similarity search (points are above ROC). 

However, models obtained with the strategy II had performance similar or slightly worse than the 

best similarity search results (points lay on a ROC or below). This can be explained by the fact that 

these models (strategy II) were trained on more congeneric subsets of compounds representing a 

smaller subspace of available ligands relatively to models trained on a diverse subset of compounds 

(strategy I). Consensus models outperformed similarity search results for the CYP450 3A4 and 

AChE data sets. 

 

Figure 40. Performance of 3D ligand-based pharmacophore models and comparison with the best 

results of similarity search based on 2D pharmacophore fingerprints. 

 

To estimate the validity of the obtained 3D ligand-based pharmacophores we used them to 

screen 3D poses of available ligands taken from ligand-protein PDB complexes. In total 9 

antagonists of adenosine 2a receptors, 10 inhibitors of AChE and 26 inhibitors of CYP450 3A4 

which were not present in the corresponding sets used to train the models were collected from PDB. 

5 antagonists of adenosine 2a receptors, 2 inhibitors of AChE, 3 inhibitors of CYP540 3A4 were 
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found by at least one model. Donepezil, AChE inhibitor, fits the 3D pharmacophore model which 

contains features corresponding to observed ligand-protein interactions. Two benzene rings are 

involved in interaction with Trp86 and Trp186 and the carbonyl oxygen forms H-bond with the 

backbone of Phe295 residue (Figure 41). The hydrophobic feature of one of CYP450 3A4 

pharmacophore models matches the phenyl group of ritonavir which fits the hydrophobic pocket of 

the protein formed mainly by phenylalanine and leucine residues. Another hydrophobic feature and 

H-bond acceptor match the thiazolyl ring which coordinates the heme. The hydroxyl group matching 

H-bond donor and acceptor features forms H-bond with the Ser119 side chain (Figure 41). The A2a 

pharmacophore model matched most of observed ligand-protein interactions for the ligand in the 

5OLZ complex. H-bond donor matches the amino group which forms H-bonds with Glu169 and 

Asn253. H-bond acceptor features match two nitrogen ring atoms. One of them forms H-bond with 

Asn253 and another one with Glu159 through a water molecule. Phenyl group matching a 

hydrophobic feature of the pharmacophore is in the pocket close to Met177, Trp246 and Leu249 

(Figure 41). 

  
AChE (4EY7) CYP450 3A4 (3NXU) 

 
A2a (5OLZ) 

Figure 41. Examples of compounds matching corresponding 3D pharmacophore models developed 

in this study. Red sphere denotes H-bond acceptor, yellow sphere – hydrophobic/aromatic feature, 

orange sphere – H-bond donor and positively charged center, green sphere – H-bond donor and H-

bond acceptor feature. 

 

It is interesting to note that in all cases features of ligand-based pharmacophore models 

matched observed protein-ligand interactions. This means that even in the absence of structural 

information about a protein ligand-based models can reveal features responsible for binding and 

receptor recognition. This result additionally confirms validity of the developed pipeline. This 
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success is also linked to the RDKit conformer generator which generated relevant conformers that 

helped to identify key features and their spatial position. The tool psearch is open-source and 

available as a Python package - https://github.com/meddwl/psearch. 

 

3.3. Pharmacophore modeling based on molecular dynamics of protein-ligand complexes 

 

Molecular dynamics (MD) simulations can capture a wide variety of important biomolecular 

processes, including conformational changes, ligand binding, and protein folding. These simulations 

can predict how biomolecules will respond to perturbations such as mutation, phosphorylation, 

protonation, or the addition or removal of a ligand100-102. The major prerequisites for emerging of 

MD simulations of drug discovery were rapid increase in the number of experimental data about 

structures of proteins and protein-ligand complexes and wide accessibility to high-performance 

computing. Many approaches were developed to identify and refine pharmacophore centers in apo-

proteins through identification of hot spots and hydration sites92, 103-105. Approaches for ensemble 

pharmacophore modeling based on MD simulations were suggested. One of them is Common Hit 

Approach (CHA)106 which demonstrated good performance in virtual screening. Molecules were 

ranked according to the number of matched representative pharmacophore models retrieved from an 

MD trajectory of a protein-ligand complex. Ensemble modeling frequently outperformed individual 

models retrieved from X-ray structures of protein-ligand complexes and models occurred most 

frequently during MD simulation. This suggests high importance of considering all variety of 

pharmacophore models. 

One of the issues of MD pharmacophore modeling is the very large number of models which 

are retrieved from every snapshot of an MD trajectory. Therefore, it is needed to rationally select a 

representative subset MD pharmacophores to facilitate their analysis and processing. Within CHA 

the authors retrieved 20 000 pharmacophore models. To select representative pharmacophores they 

grouped all models according to the number and types of pharmacophore features. The energy of 

ligand conformations corresponding to each pharmacophore model was calculated with the Merck 

Molecular Force Field (MMFF). A conformer with median energy was identified within each group 

and the corresponding pharmacophore model was selected as representative. The spatial arrangement 

of features was ignored because pharmacophore models were grouped only by the type and the 

number of pharmacophore features. Therefore, dissimilar pharmacophores with different geometry 

but the same set of features can get to the same group, which will not correspond to a single 

representative model. 

We suggested to apply the previously developed 3D pharmacophore hashes to quickly remove 

identical or similar models from large sets of 3D pharmacophores107. We retrieved all snapshots from 

an MD trajectory using MDTraj108, for every snapshot we got a pharmacophore model using PLIP109 

https://github.com/meddwl/psearch
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which was encoded by a 3D pharmacophore hash using pmapper94 and kept only models with 

distinct pharmacophore hashes. This resulted in a representative subset of pharmacophore models in 

a single pass (Figure 42). 

We also suggested a new scoring scheme for ligands, Conformer Coverage Approach (CCA), 

based on multiple pharmacophore models retrieved from MD simulations. Within CCA compounds 

are ranked according to the percentage of conformers matching at least one representative 

pharmacophore model (Figure 42). We assumed that compounds whose conformers fit more 

frequently to pharmacophores observed within MD simulations of a protein-ligand complex may 

have more favorable binding due to the less decrease of binding entropy. In the ideal case if all 

conformers of a ligand match some of observed MD pharmacophores, it means that flexibility of a 

ligand matches flexibility of a protein very well and ligand should not lose too many conformational 

degrees of freedom upon binding. Of course, this is a simplification, but it can be valid to certain 

extent. 

 

Figure 42. Compound scoring schemes based on the proposed Conformers Coverage Approach and 

the previously developed Common Hits Approach. Distinct representative pharmacophore models 

were selected among all MD pharmacophores based on their 3D pharmacophore hashes. 

 

For validation of the suggested approach we selected four complexes of cyclin-dependent 

kinase 2 (CDK2) and its ligands (PBD: 2C6O, 2FVD, 2XMY, 5D1J) (Figure 43). MD simulations 

were performed as described in the protocol107: structures were minimized and equilibrated in 

explicit solvent and production simulations were performed for 50 ns at 310 K. To evaluate 

performance of virtual screening we used the data set of known inhibitors and decoys from DUD-

E110. After a thorough check all duplicates were removed from the validation set. Also ligands 
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presented in selected four complexes were removed from the DUD-E data set to avoid the 

overestimation of model performance. The final data set contained 473 active compounds and 27853 

decoys. For compounds with an undefined configuration of stereocenters or double bonds all 

possible stereoisomers were enumerated. For each stereoisomer of a compound at most 100 

conformers were generated using RDKit and optimized in MMFF. Conformers with RMSD less than 

0.5Å were discarded as redundant. 

 
IC50 = 5 - 8.1 nM 111-113 

2C6O 

 
IC50 = 38 - 46 nM 114, 115 

5D1J 

 
Ki = 0.11 nM 116 

2XMY 

 

 
Ki = 3 nM 117 

2FVD 

Figure 43. Protein-ligand interaction charts of four selected CDK2 complexes. 

 

2500 frames were extracted from each MD trajectory of four complexes and the corresponding 

number of structure-based pharmacophore models was derived. 3D pharmacophore hashes were 

calculated for each pharmacophore to identify highly similar ones. By design, the pharmacophores 

with identical hashes should have root mean squared distance (RMSD) within the chosen binning 

step. In order to verify this hypothesis, we aligned all pairs of pharmacophore models with identical 

sets of features and calculated best fit RMSD values. As expected, pharmacophores having identical 

hashes have a distribution of RMSD values from 0 to 0.93Ǻ across all four protein targets whereas 
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RMSD values for pairs of pharmacophores having different hashes were distributed in a wider range, 

from 0.01 to 4.96Ǻ (Figure 44). This indicates an important feature - identical 3D pharmacophore 

hashes always correspond to similar pharmacophores but not always similar pharmacophores have 

identical hashes. This means that by removing pharmacophores with identical hashes we achieve the 

main purpose to reduce the number of redundant pharmacophores although keeping some 

redundancy among remaining representative pharmacophores. 

 

 

Figure 44. Gaussian kernel density of distribution of root mean squared deviation values for the best 

fit between pairs of pharmacophores with identical and different hashes. 

 

Elimination of pharmacophores with duplicated hashes substantially reduced the number of 

pharmacophores for 2C6O, 2FVD and 5D1J targets to 13.5%, 17.6%, and 27.3%, correspondingly. 

The pharmacophores retrieved for 2XMY target were the most diverse and the number of distinct 

pharmacophore hashes was high, 80.3%. This can be explained by higher flexibility of the 2XMY 

ligand and more complex pharmacophore models for 2XMY with a greater number of features than 

pharmacophores for other complexes. The maximum number of features in a pharmacophore was 10 

for 2XMY and 7 for other complexes. 

We used ensembles of models having at least 4 pharmacophore features to compare two 

ranking schemes: CHA and CCA, because simpler models were too promiscuous. Almost in all cases 

CCA demonstrated higher early enrichment factors than CHA (Figure 45). For example, for 

ensembles consisting of at least five-feature models enrichment at 0.25% was 6.27 and 10.25 

(2C6O), 4.98 and 10.5 (2FVD), 22.7 and 35.0 (2XMY), 4.64 and 4.23 (5D1J) for CHA and CCA, 

correspondingly. 
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Figure 45. Enrichment factor for two ranking strategies at different complexity of selected models. 

 

Since we had several complexes of the same protein we tested a consensus approach. 

Compounds were ranked in the descendant order according to their average CCA scores calculated 

for different protein targets. We used only pharmacophore ensembles including models with at least 

4 and 5 features because simpler models resulted in poor performance and more complex models 

were not available for all studied complexes. The consensus of four complexes demonstrated good 

performance with EF0.25% being 24.8 and 22.1 for 4- and 5-point pharmacophores, respectively 

(Figure 46). Such high performance was mainly determined by high performance of the set of 

pharmacophore models extracted from the MD trajectory of 2XMY complex and the consensus 

ranking based on four complexes did not outperform the one for 2XMY complex. However, we 

consider this as a good result because it demonstrates the power of consensus ranking and 

encourages the application of consensus ranking whenever possible because this decreases a bias 

introduced by individual model ensembles and gives more robust output. 
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Figure 46. Enrichment factors for single pharmacophore ensembles and for consensus predictions 

made by averaging of scores of single compounds calculated for individual model ensembles within 

Conformers Coverage Approach. 

 

The tool pharmd is open-source and provided as a Python package - https://github.com/ci-lab-

cz/pharmd. 

 

3.4. Summary 

 

We implemented a representation of 3D pharmacophore, which is very flexible and may find 

applications in different studies. In particular, 3D pharmacophore hashes demonstrated their 

applicability in ligand-based an MD-based pharmacophore modeling for identification of similar 

pharmacophores. For ensembles of MD pharmacophores we suggested a new scoring, Conformer 

Coverage Approach, which showed comparable or better performance than Common Hits Approach. 

All developments were implemented as open-source software to support further researches in the 

field of pharmacophore modeling. 

 

  

https://github.com/ci-lab-cz/pharmd
https://github.com/ci-lab-cz/pharmd
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Chapter 4. Multi instance modeling as a response to the complexity of modeling chemical 

systems 

 

Molecules are inherently complex objects. They may exist in different protonation and 

tautomeric forms, conformational states, and configurations in equilibrium. Which form and a state 

are the most important and relevant for a particular response is often unclear. Commonly used 

machine learning methods cannot handle this complexity naturally. They require a single molecular 

representation converting into a single vector of descriptors which is correlated with a property of a 

compound. In other words, a compound should be represented by a single instance. This is often 

achieved by certain simplifications. In 2D modeling structures of molecules are represented as 

molecular graphs with a fixed tautomeric form and a protonation state which are chosen based on 

some rules or other models118. In 3D modeling usually the lowest energy conformer is used119 that is 

not always relevant, because “bioactive” conformation may differ from the lowest energy computed 

in vacuum. Using of non-relevant conformers for 3D modeling may result in poor predictive 

performance of obtained models. Therefore, 2D modeling approaches frequently outperform 3D 

ones120, 121. To solve this issue certain efforts were made to represent compounds as ensembles of 

conformers, so called 4D modeling122. Descriptors calculated for individual conformers (instances) 

were usually averaged to get a single vector of descriptor representing a compound which can be 

processed by conventional machine learning approaches. Additionally the standard deviation, median 

values or higher moments, i.e., skewness and kurtosis, can be concatenated to a descriptor vector as 

additional features. However, such increase in complexity of the molecular representation does not 

often outperform 2D models123. A possible explanation for this is that simple protocols for descriptor 

aggregation were used. Simple averaging or averaging weighted by Boltzmann distribution in 

vacuum may be not the optimal strategy, because in the former case all conformers are considered 

equally important and in the latter case distribution in vacuum and in biological medium may differ. 

To solve the issue of multiple representations of a single compound we revisited the multi-

instance learning (MIL) approach, which was originally suggested to solve chemical problems with 

multiple conformers124. It did not find wide applicability in chemoinformatics because 4D modeling 

approaches were actively developed at the same time and attracted more attention due to their 

simplicity relatively to MIL, which required special algorithms. However, development of MIL was 

continued and it was successfully applied for other tasks: classification of text documents 

(information retrieval), classification of images (computer vision), speaker identification (signal 

processing), bankruptcy prediction (economy), etc125, 126. Recently with emerging of neural networks 

more sophisticated MIL algorithms were introduced which increased accuracy of models and 

provided additional benefits, such as identification of key instances. In particular, the latter feature of 

MIL models can be used to identify probable “bioactive” conformers for compounds without prior 
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knowledge about a structure of a target protein. We adapted the most popular MIL approaches and 

applied them to model biological properties of compounds127, 128 and catalyst enantioselectivity129, 

130. 

 

4.1. Multi-instance modeling approaches 

 

The key feature of MIL approach is representation of a molecule by a bag (set) of instances 

(e.g. conformers) each encoded by its own descriptor vector and where a property label (e.g. 

bioactivity) is known for a compound but not for individual instances (conformers). The goal is to 

establish the correlation between property values and bags of descriptor vectors. 

All MIL algorithms can be divided on two large groups: instance-based and bag-based 

methods131. Instance-based algorithms consider each conformer as a separate training instance. Bag-

based algorithms, on the contrary, represent a molecule by a single vector of descriptors, which is 

produced from the vectors of descriptors of individual conformers. 

The simplest instance-based MIL algorithm is Instance-Wrapper, where each training instance 

of a bag is assigned the same label as for the whole bag. This means, for example, that if a molecule 

is bioactive, it is assumed that all its conformations are bioactive. As a result, one gets a data set 

where each conformation is an individual training object and any conventional ML algorithms can be 

applied to build a model. Given a new molecule, the bioactivity is predicted for each conformation, 

and predictions are averaged to get the final predicted bioactivity of the molecule (Figure 47a). This 

approach has an obvious drawback because assigning the same bioactivity to all conformations of a 

molecule in a training set can bring some noise into the learning process because the fact that a 

molecule is bioactive does not mean that all its conformations are biologically relevant and 

responsible for protein-ligand recognition. 

In bag-based algorithms there is no need to identify a label for each instance in a bag. Instead, 

there is an operation that aggregates the instances to get a single vector representing the entire bag. 

The simplest implementation of the Bag-Wrapper algorithm averages descriptor values across all 

conformations and supply this single vector of descriptors to a conventional single instance machine 

learning (SIL) method (Figure 47b). The Bag-Wrapper algorithm has a similar to Instance-Wrapper 

drawback because while aggregating the descriptor vectors of all conformations the resultant vector 

may be noised by the contribution of irrelevant conformations. The Bag-Wrapper is identical to 

commonly used averaging of descriptors of conformers in 4D QSAR modeling. Thus, such 4D 

QSAR approaches can be considered as a special case of MIL approaches. 

 



70 

 

Figure 47. Multi-instance wrapper algorithms: (a) Instance-Wrapper and (b) Bag-Wrapper. SI is a 

single-instance machine learning algorithm. 

 

Multi-instance neural networks learn in an end-to-end way and take a bag of instances as input 

and directly output bag prediction. All parameters in MIL networks are optimized via back-

propagation. Wang et al.132 revisited MIL neural networks and proposed a series of novel neural 

network frameworks. They considered two types of neural networks: mi-Net (hereafter Instance-Net) 

and MI-Net (hereafter Bag-Net). In Instance-Net (Figure 48a) instances are running through fully-

connected layers and an output neuron. Then, instance predictions are averaged in the pooling layer 

to obtain a bag prediction, its error is calculated and backpropagated to adjust model weights. Bag-

Net (Figure 48b) consists of fully-connected layers followed by one pooling layer. The pooling layer 

averages instance representations learned by previous layers into a single embedding vector as a bag 

representation. The last fully-connected layer takes the embedding vector as input and outputs the 

bag prediction. Wang et al.132 examined three typical pooling operators - max pooling, mean pooling, 

and log-sum-exp pooling and concluded that all of them provided a similar performance on 

benchmark data sets. 

The Bag-Net uses a mean pooling function and as was mentioned above the irrelevant 

conformations can contribute noise to the prediction and reduce model performance. This drawback 

can be avoided by using more flexible types of pooling, such as weighted averaging pooling, known 

as attention. This type of pooling was proposed by Ilse et al133, who used an additional two-layered 

neural network to obtain weights of instances. In the Bag-AttentionNet (Figure 48c), all instances are 

first fed to the fully-connected layers. Then, the learned instance representations are used by the 

attention network with a single hidden layer. In the attention network, the number of output neurons 

is equal to the number of instances. The output layer of attention has the Softmax activation function 

and predicts instance weights. Finally, the instance weights given by the attention network are used 

for weighted averaging of instance representations to get the embedding vector that is used to 
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produce the bag prediction. Using of weighted pooling enables the Bag-AttentionNet to automatically 

identify probable bioactive conformations. 

 

 

Figure 48. Multi-instance neural networks: (a) Instance-Net; (b) Bag-Net; (c) Bag-AttentionNet. 

 

4.2. Modeling of biological activity of chemical compounds 

 

We applied the implemented approaches to predict bioactivity on a large set of targets. We 

collected 175 data sets of compounds with measured pKi or pIC50 values extracted from the 

ChEMBL23 database. The size of the data sets varied from several hundred to several thousand 

compounds. Molecules with a molecular weight greater than 700 (3 % of the total number of 

molecules) were discarded. Because the performance of 3D models may depend on the flexibility of 

studied compounds, the average number of rotatable bonds for molecules in each data set was 

calculated using RDKit. Most molecules in data sets can be considered as low to moderately flexible 

with the average number of rotatable bonds within 3-6. Data sets were split on modeling (80%) and 
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test sets (20%). The modeling sets were split on training (80%) and validation ones (20%) to tune 

hyperparameters of models. 

We generated up to 100 conformers for each molecule using the algorithm implemented in 

RDKit, which is known to be able to reproduce bioactive conformations observed for ligands in PDB 

complexes with reasonable accuracy134. This ability is important because it may improve the 

performance of obtained models, make them more reasonable, and in the case of MIL modeling 

approaches would increase the probability of identifying the most relevant conformations. 

Additionally, in the collected data sets, we identified compounds deposited in the Protein Data 

Bank (PDB) and retrieved their conformations. These PDB conformations were used as references to 

compare with the conformations predicted by MIL models as the most probable biologically relevant 

ones. 

To encode molecules for 3D modeling we used the previously developed 3D pharmacophore 

descriptors calculated by pmapper94. Each conformation was represented by a set of counts of 

identical 3D pharmacophore quadruplets calculated with the binning step 1Å. Since the descriptor 

matrix was very sparse we discarded those quadruplets which occurred less than 5% among all 

conformations of a data set. 

As reference 2D models we chose binary Morgan fingerprints (MorganFP) of radius 2 and size 

2048 calculated with RDKit because they are widely used and demonstrated high performance in 

previous benchmarking studies135. For comparative purposes we also used 2D physicochemical 

descriptors (PhysChem) and binary 2D pharmacophore fingerprints (PharmFP) calculated with 

RDKit. The former included EState indexes, the number of different pharmacophore features, rings 

systems, functional groups and fragments, etc. To calculate 2D pharmacophore descriptors we used 

the same definitions of pharmacophore features as in pmapper to make comparison more robust. 

Afterwards, pharmacophore triplets were enumerated using default binning of topological distances 

(0-2, 2-5, 5-8, 8+). 

As a single-instance machine learning algorithm for Instance-Wrapper and Bag-Wrapper we 

used a three layer neural network. The same architecture was used for building models based on 2D 

descriptors. 

 

Comparison of multi-instance approaches 

For 45 data sets out of 175, no MI models achieved the required performance of R2
test > 0.4. 

These “non-modellable” datasets were excluded from the further comparison. We performed a 

pairwise comparison of models using the Wilcoxon-Holm test with a significance level of 5%. 

Results of pairwise comparison of models were visualized with a critical difference diagram136 

(Figure 49). Instance-Wrapper outperformed all other algorithm. It was better than Bag-Wrapper 

indicating that considering of individual instances is better than aggregate them into a single feature 
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vector. Neural network-based approaches performed similarly to Bag-Wrapper. Even the most 

advanced Bag-AttentionNet was not statistically better than Bag-Wrapper. Currently we do not have 

an answer on the question why Instance-Wrapper was so successful and outperformed other models 

by a large margin. This could be the topic of further studies. 

 

 

Figure 49. Comparison of MIL algorithms against each other. Groups of models that are not 

significantly different in performance (at a confidence level of 0.05) are connected by the horizontal 

line. Axis plots the average ranks of models. 

 

Comparison of 2D and 3D approaches 

We compared performance of three types of 2D models, two MIL approaches, Instance-

Wrapper (so far the best MIL approach) and Bag-AttentionNet (the most advanced MIL approach in 

this study), and a single-instance 3D model built using the most energetically favorable 

conformations. For the sake of clarity, 29 “non-modellable” data sets for which none of the 

considered 2D and 3D models had R2
test > 0.4 were excluded and the analysis was performed based 

on the remaining 146 data sets. 

Instance-Wrapper demonstrated the best average performance (R2
test = 0.521) and 

outperformed all other models for 71 out of 146 data sets (Table 10). 2D models based on Morgan 

fingerprints and Bag-AttentionNet performed similarly, average R2
test was 0.476 and 0.450, 

respectively, and the difference between them was statistically insignificant (Figure 50). Other 2D 

models had even worse performance. 3D single-instance models demonstrated the worst 

performance. The average R2
test was 0.006.  

These results indicate ultimate importance of considering of conformational ensembles for 3D 

modeling rather than a single conformer due to the difficulty to choose relevant ones. This also 

shows the promising predictive ability of MIL models which in many cases outperformed the best 

2D approaches. 
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Table 10. Performance comparison of 2D and 3D models. Table reports mean, standard deviations, 

and median of R2
test. Top-1 is the number of cases where the model was the best. Top-2 is the 

number of cases where the model was the first- or second-best one. 

Model Mean Median Top-1 Top-2 

3D/MI/Instance-Wrapper 0.521 ± 0.239 0.530 71 111 

2D/MorganFP/Net 0.476 ± 0.186 0.502 41 65 

ЗD/MI/Bag-Attention 0.450 ± 0.401 0.488 14 57 

2D/PhysChem/Net 0.436 ± 0.165 0.443 17 41 

2D/PharmFP/Net 0.357 ± 0.275 0.383 3 17 

3D/SI/Net 0.006 ± 0.936 0.094 0 1 

 

 

Figure 50. Comparison of 2D and 3D single-instance and 3D multi-instance models against each 

other. Similarly performed models (at a confidence level of 0.05) are connected by the horizontal 

line. The numbers correspond to the average ranks of models. 

 

If one looks at the performance of Instance-Wrapper and 2D Morgan models it may notice that 

in some cases Instance-Wrapper performs reasonably well while 2D models completely failed 

(Figure 51). We analyzed physicochemical parameters of data sets where each model performed 

better than the other to investigate prerequisites of model performance. Instance-Wrapper was better 

than 2D Morgan model for 42 cases, while 2D Morgan was better for 18 data sets. The remaining 

data sets demonstrated similar performance of both models (difference in R2
test < 0.1) and were 

excluded them from the analysis. We calculated average physicochemical characteristics for both 

groups of data sets and plot them in Figure 52. The data sets where Instance-Wrapper performed 

better usually had smaller compounds (lower molecular weight, MW). Instance-Wrapper also 

worked better on data sets with less conformationally flexible compounds. This conclusion is 

supported by observation that the lower average number of rotatable bonds (RTB), the greater 

number of rings per molecule in a data set and the greater percentage of molecular framework 

relatively to the size of a whole molecule were more favorable for Instance-Wrapper models (Figure 

52). This could be explained by the ease to generate more relevant conformers in the case of more 

rigid molecules. At the same time 3D Instance-Wrapper models were better in cases if a data set 
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contained more molecules with distinct scaffolds. This indicated the better generalizing ability of 3D 

models and we link this with more abstract nature of 3D pharmacophore quadruplets than circular 

substructures (Morgan fingerprints). 

 

Figure 51. Performance of Instance-Wrapper and the best 2D model based on Morgan fingerprints. 

Only data sets, where at least one of these models had R2
test > 0.4, were depicted. 

 

 

Figure 52. Distribution of average physicochemical parameters for data sets where 2D Morgan or 

Instance-Wrapper models demonstrated better performance with the difference in R2
test greater than 

0.1. MW is for molecular weight, RTB – the number of rotatable bonds. 

 

Identification of biologically relevant conformers 

The attention mechanism allows Bag-AttentionNet models to identify the most relevant 

conformations during the learning be selecting of conformers with the largest attention weights. We 

validated this hypothesis by comparing the conformations selected by models with conformations 

retrieved from PDB. There were only four data sets for which Bag-AttentionNet models had R2
test > 

0.4 and where there were at least 10 compounds in corresponding test sets which had 3D structures 

in PDB. To measure the accuracy of identification of bioactive conformations we calculated Top-3 
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success rate as a proportion of compounds for which at least one of three conformations with the 

highest attention weights fits the experimental structure with RMSD < 2.0 Å. Similarly we calculated 

the same statistics for the lowest energy conformers. 

To compare accuracy of identification of relevant conformers with docking we chose for each 

protein target a PDB complex with a binding site intersected with most of binding sites of other 

complexes and used it for docking of the same test set compounds (CHEMBL2820 – 4Y8Y, 

CHEMBL3048 – 4IMS, CHEMBL335 – 3EAX, CHEMBL4802 – 4KCQ). This cross-docking 

experiment was more fair then performing re-docking to cognate receptor structures, because in the 

case of machine learning we do not use information about receptor conformation to select a relevant 

conformer. Docking was performed using AutoDock Vina137. Three top scored poses were taken to 

calculate top-3 statistics similarly as described above. 

Since it was claimed that RDKit conformer generator is able to reproduce bioactive 

conformations we calculated baseline statistics to estimate top-3 metric if one would randomly 

choose three conformers for each molecule. We calculated probability of choosing at least one 

conformer with RMSD below 2 Å for each molecule and averaged these values within each test sets. 

 

 

Figure 53. Identification of bioactive conformations within test set compounds for four data sets (n is 

a number of compounds). Challenging compounds is a subset of test set compounds which have 

mean RMSD of all generated conformers to a bioactive conformation greater than 2Å. R2
test of 

3D/MI/Bag-AttentionNet models was 0.45, 0.55, 0.72 and 0.54 for CHEMBL2820, CHEMBL3048, 

CHEMBL335 and CHEMBL4802 datasets, respectively. 

 

The calculated baseline statistics was relatively high (Figure 53). This indicates that RDKit 

conformer generator substantially enriches the set of conformers with those which are close to 
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experimental ones. This also makes it challenging to improve this baseline performance. Bag-

AttentionNet models could improve baseline accuracy in identification of bioactive conformers and 

performed comparably well or better than the random choice. The most remarkable improvement 

was observed for coagulation factor XI (CHEMBL2820). For two targets, brain and endothelial 

nitric-oxide synthases (CHEMBL3048 and CHEMBL4802, correspondingly), Bag-AttentionNet 

performed comparable to the baseline. Protein-tyrosine phosphatase 1B (CHEMBL335) was the 

most difficult target for identification of relevant conformers and all approaches demonstrated low 

performance. This was caused by the fact that only a part of those compounds bind to the protein, 

while the remaining part was exposed to water medium and could adopt any conformations with 

almost no restrictions. Therefore, even docking was not able to identify poses observed in X-ray 

structures. In general docking performed relatively poor and even worse than the random baseline in 

cases of CHEMBL2820 and CHEMBL335. Choosing of conformers with the lowest calculated 

energy resulted in performance comparable to random choice or worse. 

Additionally, we considered subsets of “challenging” compounds with mean RMSD to 

bioactive conformation greater than 2Å. These subsets were enriched by very flexible compounds for 

which diverse sets of conformations were generated. As expected, the performance of key 

conformation identification for these compounds was lower (Figure 53), but Bag-AttentionNet 

demonstrated performance comparable or higher than random baseline, supporting an intelligent 

selection of relevant conformations. 

 

4.3. Enantioselectivity modeling of reactions with chiral catalysts 

 

Enantioselective catalysis is widely used for the synthesis of enantiomerically pure 

compounds. Design of perspective catalysts is traditionally conducted by iterative modification of the 

molecular structure aiming to increase the enantioselectivity of a reaction product. Predictive 

chemoinformatics models may guide chemists toward the most promising catalysts before their 

synthesis and experimental testing, reducing in such a way both human and material resources138. 

There are several approaches suggested to model catalyst enantioselectivity. One of the state-of-the-

art approaches, Average Steric Occupancy (ASO), uses multiple conformer alignment followed by 

assessment of the occupancy of nodes of a rectangular grid. The ASO descriptors displayed better 

performance compared to single conformer descriptors139, 140. The potential issue of alignment-based 

3D method is their applicability to a diverse set of compounds having different scaffolds. 

In our pilot study we applied the implemented Bag-AttentionNet approach (Figure 48c) on the 

same data set as used in the work of Zahrt et al139 to demonstrate its applicability in solving 3D 

modeling tasks other than prediction of a biological activity. The dataset consists of 1075 reactions 

of asymmetric addition of thiols to imines catalyzed by phosphoric acid (Figure 54). It was obtained 
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by systematically performing of 25 transformations in presence of 43 catalysts. The catalyst 

selectivities were estimated by enantiomeric excess (ee %) ranged from -43 to 99. For the model 

development, the ee % values were converted into ΔΔG (kcal/mol). 

The whole data set was split on training set and three test sets identically as it was done in the 

study of Zahrt et al. The training set included 384 reactions obtained from 16 transformations in the 

presence of 24 catalysts. Test sets were selected according to different scenarios: (a) new reactions 

with known catalysts (“transformation-out”), (b) known reactions with new catalysts (“catalyst-out”), 

and (c) new reactions with new catalysts (“both-out”). Thus, Test set 1 contained 216 reactions 

resulted from a combination of 24 catalysts from the training set with 9 new transformations, Test set 

2 included 314 instances (19 new catalysts/16 training reactions), and Test set 3 contained 171 

instances (19 new catalysts/9 new reactions). 

For catalysts we generated up to 50 conformers within 10 kcal/mol by RDKit. Redundant 

conformers with RMSD < 0.5Å were discarded. Every conformer was encoded by count-based 

pmapper descriptors94. Transformations were represented by a condensed graph of reactions (CGR) 

and encoded by ISIDA fragment descriptors10. In this study we used atom-centered subgraphs 

containing a given atom with the atoms and bonds of its 1 to 4 coordination spheres. Vectors of 2D 

fragment reaction descriptors and 3D catalyst quadruplets were concatenated to form a combined 

reaction/catalyst descriptor vector (Figure 55). 

 

 

Figure 54. Reaction of N,S-acetal formation and related condensed graph of reaction (CGR). The 

created bond between the atoms S3 and C2 and double bond transformed to single between the atoms 

N1 and C2 are highlighted. 
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Figure 55. Preparation of descriptors encoding reaction/catalyst combinations. A chemical reaction is 

encoded by m ISIDA/CGR descriptors calculated for the condensed graph of reaction. A catalyst is 

represented by its N conformations, each encoded by n pmapper descriptors. Concatenation of 

reaction and catalyst descriptors results in the vector of (m+n) size. 

 

For the comparison purpose we built multi-instance as well as a single instance model based on 

the catalysts with the lowest energy calculated with MMFF. Performances of single-conformation 

and multi-conformation models (mean absolute error, MAE) in comparison with those of the model 

by Zahrt et al. are given in Figure 56. One may see that for Test set 1, both single-instance and multi-

instance models performed similarly to Zahrt’s model, whereas for Test sets 2 and 3, performances 

of multi-instance model and Zahrt’s models were similar whereas the single-instance model 

performed much worse. This indicates importance of including information about multiple 

conformations in 3D modeling. 

 

Figure 56. Mean absolute error (MAE, kcal/mol) obtained for three test sets. 

 

We also compared our alignment-free descriptors for 3D modeling with other ones available in 

RDKit. We built Bag-AttentionNet models for the training set and used 25-fold cross-validation to 

estimate the predictive performance. In each cross-validation fold 1 out of 25 transformations and all 

43 associated reactions were moved to a test set. Our pmapper descriptors demonstrated the most 
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robust performance among other available 3D descriptors (Figure 57) confirming the importance of 

properly chosen descriptors to represent catalysts. 

 

 

Figure 57. Performance of models based on different classes of 3D descriptors in predicting BINOL-

derived catalysts selectivity in 25 reactions. Each box contains a cross-validated determination 

coefficient R2 for 25 models (one model per transformation). 

 

In the later study130 we demonstrated applicability of MIL models to predict enantoselectivity 

of catalysts on three other datasets. Instance-Wrapper demonstrated the best performance among 

other MIL approaches and was on par or better than performance of state-of-the-art models. 

 

4.4. Summary 

 

Here, we implemented several multi-instance approaches and demonstrated their applicability 

in different tasks. Multi-instance learning approaches solve a long-lasting issue of choosing an 

appropriate conformer for modeling and multi-conformer models systematically outperformed 

models based on the energetically favorable conformers. The ability of multi-instance models to 

identify relevant conformers was even higher than for molecular docking. 3D multi-conformer 

models could even outperform 2D models in a large number of tasks. However, 3D models are more 

computationally expensive. Therefore, we recommend to use 3D multi-conformer models to predict 

biological activity of compounds if 2D models fail. In combination with pmapper descriptors 3D 

multi-conformer models do not require pre-alignment of conformers of compounds that enables 

modeling of data sets with diverse and flexible molecules. 

All these studies were pilot ones and there are still many open questions and room for 

improvement. Many tasks can be formulated and solved within MIL approaches. For example, one 

may consider compounds as a set of tautomers and protonation states to make more comprehensive 
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representation of molecules. Modeling of properties of mixtures can be also solved within the MIL 

framework if individual components of a mixture are considered as instances. A unique feature of 

MIL approaches is the ability to identify key instances – molecular forms associated with an 

observed property of a molecule. Despite of success examples in the case of identification of relevant 

conformer responsible for protein binding it requires more comprehensive and systematic validation. 

We summarized all these features and issues in the recent review141. 

The implemented models are available in the open-source repository 

https://github.com/dzankov/3D-MIL-QSAR to stimulate researches in the field of multi-instance 

learning in chemistry. 

  

https://github.com/dzankov/3D-MIL-QSAR
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Chapter 5. Structure enumeration and de novo design (chemical space exploration) 

 

The drug-like chemical space is vastly enormous – its size estimates in ~1033 compounds142. In 

the nearest future, it will be impossible to enumerate this space or perform any kind of exhaustive 

search. Therefore, methods and strategies to explore this space effectively attract vivid research 

interest. One of the popular strategies is de novo design – model-driven generation of new chemical 

structures with promising predicted properties143, 144. The widely used strategy is iterative generation 

of compounds which is guided by QSAR, docking or pharmacophore models145-149. Each iteration 

new structures are generated and candidates with the most promising predicted properties are 

selected for the next iteration. The commonly used structure generation approaches can be divided on 

atom-, fragment- and reaction-based. Atom-based approaches generate new structure by application 

of basic operations, e.g. add/remove atom/bond, etc150. This gives excellent flexibility and the ability 

to generate every possible molecule. However, there are several issues of this kind of approaches: i) 

possible combinatorial explosion due to the large number of modification steps required to reach 

desired molecules; ii) necessity to control chemical validity of generated structures and iii) the main 

issue is poor synthetic accessibility of designed molecules which hardly can be controlled in this 

setting. Reaction-based approaches use pre-compiled reaction and reactant libraries which are 

applied to sequentially modify molecules148. They usually use only coupling reactions and therefore 

applicable only in decoration or expansion of molecules. This can limit the covered chemical space 

but greatly improves synthetic accessibility of output molecules that was confirmed in many 

studies148, 151-153. Fragment-based structure generators construct molecules by 

addition/removal/replacement of fragments146, 149, 154. They provide greater flexibility in exploration 

of chemical space than reaction-based approaches but cannot guarantee synthetic feasibility of 

designed compounds. However, synthetic feasibility should be better than for atom-based approaches 

and it should be easier to control, e.g. by linking of synthetically feasible fragments. 

Another strategy to generate molecules is application of recently emerging deep neural 

networks155-161. They provide great flexibility of structure generation due to different architectures162-

164. However, they still suffer from the issue of poor synthetic feasibility of designed molecules and 

this is a major issue for the majority of existing structure-generation approaches165. 

 

Here, we suggested and implemented a new fragment-based structure generation approach 

inspired by matched molecular pairs which provides a certain level of control over synthetic 

feasibility of generated structures and solves to some extent this long lasting issue for fragment-

based approaches. 
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5.1. Chemically reasonable mutations (CReM) 

 

The idea of interchangeable fragments – the core of the developed approach166 – is directly 

related to the matched molecular pairs approach considering their local context167. Interchangeable 

fragments are fragments that occur in the same local chemical context in structures of existing 

compounds (Figure 58). Atoms within a particular radius around attachment points of a fragment 

represent the local chemical context. We replace one fragment by another if both have identical 

chemical context that should result in a chemically valid and feasible structure. Thus, by design, the 

chemical validity of generated structures is guaranteed. Intuitively, it can be also expected that the 

generated compounds are synthetically feasible. 

 

 

Figure 58. Generation of a database of interchangeable fragments and new molecules. 

 

Generation of a database of interchangeable fragments is a two-step procedure. On the first 

step, structures of known compounds are exhaustively fragmented by cutting up to 4 non-cyclic 
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single bonds between two heavy atoms using RDKit implementation of the matched molecular pairs 

algorithm suggested by Husain and Rea168. Hydrogens are cut separately. On the second step, a 

context of a given radius is determined for attachment points of each fragment and encoded in a 

SMILES string. This SMILES string is canonicalized to get both a canonical numbering of 

attachment points and canonical SMILES representation of a context. SMILES representation of a 

context of a given radius and an associated fragment are stored in a database table as a key-value pair 

for a subsequent search of interchangeable fragments (values) having an identical context (key) 

(Figure 58). 

To replace a fragment in a molecule its context of a given radius is determined and canonically 

encoded. The given SMILES string of a context is searched in a fragment database and fragments 

with the same context are retrieved and used for fragment replacement (Figure 58). 

We implemented three modes of structure generation: MUTATE, GROW and LINK (Figure 

59). MUTATE is a replacement of an arbitrarily chosen fragment with another one. GROW is a 

special case of a MUTATE operation – replacement of a hydrogen with another fragment. LINK is a 

replacement of hydrogen atoms in two molecules to link them by an appropriate fragment. 

 

MUTATE 

 

GROW 

 

LINK 

 
Figure 59. CReM structure generation modes. 

 

Several tuning parameters are available: 

1. Structures of the input compounds used to create a database of interchangeable fragments.  

Management of the content of the input compound database used for fragmentation gives 

indirect control over enumerated structures and provides additional flexibility. The selection of 

more synthetically feasible input compounds may improve synthetic feasibility of generated 

compounds. At the same time pre-selection of compounds for fragment library enumeration 

may reduce diversity and novelty of generated structures. 

2. Radius of a considered molecular context. 
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Increasing the radius of a considered molecular context will decrease the appearance of new 

chemotypes in enumerated compounds and makes replacements more conservative. In other 

words, no new chemotypes smaller than a chosen radius can be created if these chemotypes are 

absent in the fragment database. This property can be useful if one excludes compounds having 

undesired patterns (e.g. PAINS or toxicophores) to create a fragment database and chooses a 

large enough radius to avoid appearance of these undesired fragments in generated molecules. 

Making more conservative replacements can also improve synthetic accessibility of generated 

compounds. 

3. Frequency of occurrence of interchangeable fragments in the input database. 

Similarly to the synthetic accessibility score suggested by Ertl & Schuffenhauer169 it can be 

supposed that replacement with more frequently occurred fragments will lead to more 

synthetically feasible compounds. This will also reduce the number of replacements and 

increase search speed. 

4. Size of fragments which will replace each other. 

The size of replaceable fragments can control exhaustiveness of chemical space exploration by 

increasing or decreasing search steps and depends on the goal of a particular study. Lead 

optimization studies may require small steps to explore local chemical space around a parent 

compound, whereas lead generation may require large steps in the beginning to quickly and 

coarsely explore larger chemical space and smaller steps in the end to finely tune generated 

structures. 

5. Maximum number of randomly chosen replacing fragments. 

Limiting the maximum number of replacements can speed up the exploration of a chemical 

space as generated fragment databases can be very large and making all possible replacements 

can be costly. 

6. Protection of selected atoms from modification or modification of only selected atoms. 

This functionality can be useful for property/activity optimization studies to protect scaffold or 

pharmacophore features from changes or to modify molecules only at specific positions. 

With all these options CReM approach possesses great flexibility and control over generated 

structures. 

 

Here, we will describe application of CReM to Guacamole tasks. Application of CReM to 

other use cases is described in the paper166. Guacamol is a set of distribution learning and goal-

directed benchmarks170. Within distribution learning benchmarks a structure generator should 

reproduce the distribution of the training set molecules. In goal-directed benchmarks it should 

reproduce structures of known drugs or generate compounds similar to reference ones, enumerate 

isomers of a particular empirical formula, perform multiobjective optimization of properties of 
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reference compounds, scaffold hopping and scaffold decoration. There are 20 goal-directed tasks. 

Scores in each tasks span from 0 to 1 (perfect). So, the maximum total score which can be achieved 

is 20. 

 

The database of interchangeable fragments was created from compounds of ChEMBL database 

(version 22). After standardization, removal of duplicates and compounds containing non-organic 

atoms (organic atoms are C, N, O, S, P, F, Cl, Br, I, B) we got 1.5 million distinct structures. 

Compounds were fragmented as described above and fragments and their contexts were stored in the 

database. As expected the number of distinct fragment-context pairs increased with the increase of 

the context radius: radius 1 had 35 million pairs, 2 – 41M, 3 – 51M, 4 – 62M, 5 – 74M. 

 

Guacamol distribution-learning benchmarks 

We implemented a specific approach to test CReM on distribution learning benchmarks. A 

seed compound having molecular weight less than 350 Da was randomly chosen from the reference 

ChEMBL database. The MUTATE operation was applied to it to enumerate new structures. The size 

of replaced fragments was set to a range from 0 to 8 heavy atoms. Different size of replacing 

fragments relative to replaced ones was chosen: ±2, ±6, ±10 and a non-symmetric one from -10 to 2. 

The larger difference should result in larger steps and better coverage of chemical space. The 

maximum number of randomly chosen replacements was set to 2, 5, 10 or 100. A smaller number of 

replacements should result in more diverse generated compounds and better coverage of chemical 

space due to the greater number of steps required to generate 10000 distinct structures. Compounds 

with molecular weight greater than 500 Da were discarded. A random compound from the generated 

ones on the last iteration was chosen for the next iteration if no compounds with molecular weight 

less than 500 Da were generated a random compound from an already generated population was 

picked. Each combination of parameters was tested in three independent runs. 

As expected, all generated structures were chemically valid irrespective of the chosen setup 

(Table 11). Novelty achieved a maximum value in almost all cases. Uniqueness of compounds was 

also high. KL divergence was somewhat greater in cases where the larger variation of the size of 

replacing fragments was allowed and where a smaller number of compounds was selected on each 

iteration. Moderate KL divergence and low Frechet ChemNet Distance scores showed that the 

implemented iterative search approach could not reproduce the distribution of the reference space 

well. 
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Table 11. Results for the distribution learning Guacamol benchmarks. 

Case 
Min 

increase 

Max 

increase 

Max 

replacements 
Validity Uniqueness Novelty KL divergence 

Frechet 

ChemNet 

Distance 

CReM -2 2 100 1 ± 0 0.935 ± 0.021 1 ± 0 0.443 ± 0.023 0.021 ± 0.007 

CReM -2 2 10 1 ± 0 0.942 ± 0.008 1 ± 0 0.530 ± 0.061 0.024 ± 0.034 

CReM -2 2 5 1 ± 0 0.941 ± 0.003 1 ± 0 0.572 ± 0.038 0.044 ± 0.053 

CReM -2 2 2 1 ± 0 0.950 ± 0.002 1 ± 0 0.551 ± 0.054 0.019 ± 0.018 

CReM -6 6 100 1 ± 0 0.942 ± 0.023 0.999 ± 0 0.541 ± 0.056 0.018 ± 0.012 

CReM -6 6 10 1 ± 0 0.924 ± 0.010 1 ± 0 0.603 ± 0.019 0.041 ± 0.045 

CReM -6 6 5 1 ± 0 0.921 ± 0.022 1 ± 0 0.584 ± 0.034 0.038 ± 0.040 

CReM -6 6 2 1 ± 0 0.935 ± 0.009 1 ± 0 0.605 ± 0.015 0.053 ± 0.050 

CReM -10 10 100 1 ± 0 0.918 ± 0.019 1 ± 0 0.531 ± 0.058 0.071 ± 0.027 

CReM -10 10 10 1 ± 0 0.907 ± 0.022 0.999 ± 0.001 0.622 ± 0.011 0.030 ± 0.016 

CReM -10 10 5 1 ± 0 0.875 ± 0.025 1 ± 0 0.599 ± 0.035 0.085 ± 0.056 

CReM -10 10 2 1 ± 0 0.850 ± 0.094 1 ± 0 0.590 ± 0.064 0.006 ± 0.005 

CReM -10 2 100 1 ± 0 0.945 ± 0.021 0.999 ± 0 0.550 ± 0.037 0.016 ± 0.012 

CReM -10 2 10 1 ± 0 0.950 ± 0.008 1 ± 0 0.545 ± 0.007 0.045 ± 0.010 

CReM -10 2 5 1 ± 0 0.956 ± 0.001 1 ± 0 0.533 ± 0.073 0.048 ± 0.036 

CReM -10 2 2 1 ± 0 0.962 ± 0.006 1 ± 0 0.577 ± 0.027 0.042 ± 0.037 

SMILES 

LSTM* 
   0.959 1 0.912 0.991 0.913 

Graph 

MCTS* 
   1 1 0.994 0.522 0.015 

AAE*    0.822 1 0.988 0.886 0.529 

ORGAN*    0.379 0.841 0.687 0.267 0 

VAE*    0.870 0.999 0.974 0.982 0.963 
*results were taken from the Guacamol paper 170 

 

Guacamol goal-directed benchmarks 

To evaluate CReM on goal-directed Guacamol tasks we implemented an iterative search 

protocol inspired by the genetic algorithm. If the list of the seed structures was empty the seed 

structures were chosen randomly from the list of SMILES supplied with the Guacamol and 

represented the whole ChEMBL database. The size of a population selected on each iteration was set 

to be equal to the size of the output population, but not less than 10 compounds. To make the search 

adaptive we adjusted the fragment size of replacement according to the current score of the 

population. If the score was equal or less than 0.3 (far from the goal) the replacing fragment can 

differ at most on ±10 heavy atoms from the replaced one. If the score was greater than 0.8 (close to 

the goal) the replacing fragment can differ at most on ±4 heavy atoms from the replaced one. 

Intermediate fragment sizes (5-9) were chosen if the score was within 0.3 - 0.8 range. This allows to 

quickly explore chemical space in the beginning and to better tune structures at the end of generation. 

For each compound in a population up to 1000 randomly chosen mutations were applied. 

Compounds, which were already used for structure generation, were stored in a separate list and 
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removed from the list of generated structures. Remaining top-scored compounds were selected for 

the next iteration. 

Since the implemented optimization procedure is local and can get stuck in local optima we 

implemented three levels of “patience”. At the first level if the best score was not improved after 

three consecutive iterations the fragment size was increased on ±1 and the number of randomly 

chosen replacements on 100 irrespectively to the current score. This makes the small stepwise 

increase in chemical space exploration. If after 10 consecutive iterations no improvement was 

observed larger changes were applied: the size of replacing fragment was increased on ±10 and the 

number of replacements on 500. This would enable the rougher exploration of a chemical space 

around the best candidates. At the third level, if after 33 iterations no improvement was observed 

new seed compounds were randomly selected to restart the search but the best found candidates were 

kept. This procedure was not applied if the seed structure was supplied with the task. The list of 

already visited compounds was cleared after any change of generator parameters whether this was 

caused by improving the best score or by exceeding one of "patience" levels. The maximum 

execution time of each task was set to 5 hours or maximum of 1000 iterations were allowed. 

The results demonstrated that the implemented search algorithm based on CReM approach 

compared well with the published reference approaches by achieving the highest score in 16 out of 

20 tasks (Table 12). However, the total score was slightly lower than the total score of Graph GA 

approach, which uses the genetic algorithm on molecular graphs. This is mainly due to the 

considerable advantage demonstrated by Graph GA approach (0.891) over CReM-based approach 

(0.763) in the task of generation of molecules, which were structurally dissimilar to sitagliptin but 

had similar lipophilicity and topological polar surface area. Interestingly, the other reference 

approaches performed even worse in this task. 
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Table 12. Results for the Guacamol goal-directed benchmarks. 

task 
SMILES 

LSTM* 

SMILES 

GA* 

Graph 

GA* 

Graph 

MCTS* 
CReM 

Celecoxib rediscovery 1.000 0.732 1.000 0.355 1.000 

Troglitazone rediscovery 1.000 0.515 1.000 0.311 1.000 

Thiothixene rediscovery 1.000 0.598 1.000 0.311 1.000 

Aripiprazole similarity 1.000 0.834 1.000 0.380 1.000 

Albuterol similarity 1.000 0.907 1.000 0.749 1.000 

Mestranol similarity 1.000 0.79 1.000 0.402 1.000 

C11H24 0.993 0.829 0.971 0.410 0.966 

C9H10N2O2PF2Cl 0.879 0.889 0.982 0.631 0.940 

Median molecules 1 0.438 0.334 0.406 0.225 0.371 

Median molecules 2 0.422 0.38 0.432 0.170 0.434 

Osimertinib MPO 0.907 0.886 0.953 0.784 0.995 

Fexofenadine MPO 0.959 0.931 0.998 0.695 1.000 

Ranolazine MPO 0.855 0.881 0.92 0.616 0.969 

Perindopril MPO 0.808 0.661 0.792 0.385 0.815 

Amlodipine MPO 0.894 0.722 0.894 0.533 0.902 

Sitagliptin MPO 0.545 0.689 0.891 0.458 0.763 

Zaleplon MPO 0.669 0.413 0.754 0.488 0.770 

Valsartan SMARTS 0.978 0.552 0.990 0.04 0.994 

Deco Hop 0.996 0.970 1.000 0.590 1.000 

Scaffold Hop 0.998 0.885 1.000 0.478 1.000 

total score 17.341 14.398 17.983 9.011 17.919 
*results were taken from the Guacamol paper 170 

 

Synthetic accessibility of generated molecules 

From our preliminary experiments it was found that synthetic accessibility of generated 

molecules depends most strongly on the chosen radius and the input set of molecules which are 

converted into a database of interchangeable fragments. Therefore, we studied this relationship using 

goal-directed Guacamol benchmarks. 

We hypothesized that using more synthetically feasible molecules for fragmentation will 

improve accessibility of generated compounds. To verify this hypothesis we created additionally to 

the fragment database created from all ChEMBL compounds two databases where compounds were 

preliminary filtered according to their synthetic accessibility (SA) score. SA score was suggested by 

Ertl and Schuffenhauer and it spans from 1 (easy to synthesize) to 10 (hard to synthesize)169. The 

median SA value for compounds from ChEMBL is 3. Therefore, we selected subsets of compounds 

with SA scores at most 2 and 2.5. This substantially reduced the number of compounds and as a 

consequence the number of distinct fragment-context pairs in the generated databases (Table 13). 
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Table 13. Fragment database statistics. 

database label 
number of 

compounds 

number of distinct context-fragment pairs in a database 

radius 1 radius 2 radius 3 radius 4 radius 5 

all ChEMBL 

compounds 
all 1 554 260 51 312 712 60 116 865 74 198 048 89 152 239 104 076 972 

SAScore ≤ 2.5 SA2.5 572 527 11 260 763 13 858 193 17 478 013 21 628 459 26 032 412 

SAScore ≤ 2 SA2 107 806 1 529 346 1 937 044 2 467 559 3 099 537 3 799 202 

 

Since the implemented search algorithm to solve goal-directed Guacamol tasks described 

above was stochastic we made five independent runs for every combination of the fragment database 

and radius to get more robust estimates. To estimate performance we summed scores of individual 

Guacamol tasks which can be maxed to 20. To estimate synthetic feasibility of generated compounds 

we averaged SA scores among all generated compounds in a particular run to get an overall 

estimation of synthetic feasibility of generated compounds. As an additional estimation of synthetic 

feasibility we used the AiZynthFinder retrosynthetic approach171 which is reimplementation of the 

seminal study of Segler et al.172 It tries to reconstruct a sequence of transformations which may result 

in a desired compound starting from known molecules taken from ZINC. In this case the measure of 

synthetic feasibility was the percentage of compounds for which the reconstruction of retrosynthetic 

pathways was successful. As an additional evaluation metric we calculated the average number of 

steps in successfully reconstructed pathways. 

We observed good reproducibility of benchmark results in terms of Guacamol and SA scores 

across five repeated runs (Figure 60a-b). As expected the Guacamol total score was the highest for 

the runs based on the full fragment database (Figure 60a). Increasing of the context radius resulted in 

decreasing of the Guacamol total score. This effect was less pronounced for the full fragment 

database and more pronounced for fragment databases created from synthetically more feasible 

compounds. SA scores were also predictably changed if we switched from the full fragment database 

to those ones created from synthetically more feasible compounds (Figure 60b). Increasing of the 

context radius also resulted in improvement of SA scores of generated compounds due to making 

more conservative replacements. 
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e 

 

Figure 60. Average guacamole total score (a), average SA score (b), the percentage of structures for 

which AiZynthFinder successfully reconstructed retrosynthetic trees (c) and the average number of 

steps in the found pathways leading to solved structures (d). Error bars designate standard deviation 

from the average among 5 independent runs. (e) Average SA scores vs. the percentage of molecules 

for which AiZynthFinder solved retrosynthetic pathways for molecules generated in individual runs. 

 

The percentage of molecules for which AiZynthFinder could resolve retrosynthetic pathways 

strongly correlated with average SA scores (RPearson = -0.98) (Figure 60e). This suggests that SA 

scores are relevant for estimation of synthetic accessibility and additionally confirms conclusions 

made above that increasing of the context radius improves the synthetic accessibility of generated 

molecules as well as choosing of a more heavily SA-biased fragments database. Pathways for almost 

80% of molecules were reconstructed in the case of the SA2 database and context radius 5 (Figure 

60c) and in average 2.4 steps were required to get these molecules (Figure 60d). 

The trade-off between total Guacamol scores and synthetic feasibility of generated compounds 

is clearly demonstrated in Figure 61. Increase of the context radius improved synthetic feasibility of 

compounds but lowered total benchmark scores. Using databases generated from synthetically more 

feasible compounds resulted in further decrease of Guacamol scores and improvement of synthetic 

feasibility of generated compounds. There is a noticeable Pareto front created by suboptimal 

solutions (Figure 61). 

Among references approaches only Graph GA173 and SMILES LSTM161 were close or lay on 

the Pareto front. However, Graph GA approach resulted in overly complex molecules with average 

SA score greater than 4 whereas the average SA score of compounds from ChEMBL was around 3. 

Other approaches, SMILES GA174 and Graph MCTS173 were far from the Pareto front and were not 

competitive. 
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Figure 61. Total Guacamol score and average synthetic accessibility scores for CReM-based and 

reference approaches which results were taken from the Guacamol paper170. 
 

Gao and Coley suggested to introduce synthetic feasibility score in Guacamol optimization 

functions to explicitly bias generated compounds towards more synthetically accessible ones 

(evaluator bias)165. In their study they considered only ten so called hard Guacamol tasks which are 

related to multiobjective optimization and scaffold hopping/decoration. That was reasonable because 

for many of the remaining tasks perfect scores were usually achieved. To introduce the evaluator bias 

the authors implemented desirability functions for SA scores. Compounds having SA scores 

approximately up to 2.3 were considered favorable, desirability of compounds with SA scores from 

2.3 to approximately 4 was decreased from 1 to 0, more complex compounds were considered 

unfavorable. Thus, it was expected that the majority of solutions biased by SA score would have SA 

scores below 4. 

We took their results and compared with those obtained by CReM for the same tasks (Figure 

62). In the case of CReM, average SA scores for compounds generated within 10 hard tasks were 

comparable or a little bit higher to the corresponding scores of compounds generated in all 20 tasks. 

At the same time, CReM solutions for hard tasks had high total Guacamol scores. The majority of 

solutions resulted in the total score from 8 to 9 out of maximum 10 points. The best solutions still 

formed the noticeable Pareto front (Figure 62). 
 

 

Figure 62. Total Guacamol score and average synthetic feasibility scores for CReM-based and 

reference approaches which results were taken from the Guacamol paper170 for 10 hard tasks. 
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Unbiased reference approaches Graph GA and SMILES LSTM demonstrated relative decrease 

in total Guacamol scores for hard tasks and they were no longer on the Pareto front but still close to 

it (Figure 62). Explicit biasing with SA score resulted in solutions having improved synthetic 

feasibility but lower total Guacamol scores. These reference solutions extended the Pareto front 

created by the CReM solutions and contributed to the bottom part of that front. Graph GA and 

SMILES GA approaches were the most sensitive to explicit biasing and generated compounds had 

substantially improved synthetic feasibility scores whereas compounds generated with SMILES 

LSTM were less improved in their average synthetic feasibility. 

 

5.2. Summary 

 

The developed CReM approach for fragment-based structure generation solves the main issue 

of previously available methods. It provides a clear control over synthetic complexity of generated 

molecules. The Guacamol results demonstrated a competitive nature of CReM relatively to advanced 

approaches based on neural network generative models. The tool can be combined with any kind of a 

model to guide the generation process. 

CReM is available as open-source software (https://github.com/DrrDom/crem) and as a free 

web application (https://crem.imtm.cz). It was also included in benchmarking studies by other 

researchers175-177 and became an integral part of Distilled Graph Attention Policy Network model178 

developed at the University of California, Berkley (https://github.com/yulun-rayn/DGAPN) and it 

was included in the developing MolDrug project - https://github.com/ale94mleon/MolDrug. 

Currently we are working on development of tools which integrate CReM with the most commonly 

used modeling approaches (molecular docking, 3D pharmacophores, machine learning) to address 

different aims: i) de novo structure generation; ii) scaffold decoration; iii) expansion of fragment-size 

hits inside a binding site; iv) multi-objective optimization. 

  

https://github.com/DrrDom/crem
https://crem.imtm.cz/
https://github.com/yulun-rayn/DGAPN
https://github.com/ale94mleon/MolDrug
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Chapter 6. Computer-aided design of biologically active molecules 

 

I was involved in many drug design and medicinal chemistry projects, which were related to 

development of anti-platelet179-182, antiviral183, anti-parasitic184, 185 and anti-cancer186, 187 agents. The 

most recent examples, where we used some of the developed approaches described above, were 

related to inhibitors of kinases and ligands of GPCR receptors. We participated in the first CACHE 

challenge188 where we also applied our new tools to find hits for the WDR domain of leucine-rich 

repeat kinase 2 (LRRK2) within the Enamine REAL space containing about 16 billion compounds. 

However, the recent applications were not ready for publication. Therefore, here, we will describe 

several selected projects which were already published. 

 

6.1. Antagonists of the open form of integrin αIIbβ3 as antithrombotic agents 

 

Thrombus formation is the most important pathological mechanism underlying 

atherothrombotic diseases such as acute coronary syndromes and ischemic stroke/transient ischemic 

attack, which are responsible for elevated mortality worldwide and which are a platelet-mediated 

phenomenon189, 190. To start to form clots, platelets should be turned from the rested state to the 

activated one191. Rupture of atherosclerotic plaques is supposed to be the main cause of arterial 

thrombus formation192, 193. This exposes such platelet activating proteins as tissue factor, von 

Willebrand factor, collagen, etc. Activated platelets are able to excrete other agonists of platelet 

activation such as adenosine diphosphate and thromboxane A2, which promote activation of adjacent 

platelets194. Activated platelets change their shape and expose fibrinogen receptors, integrin αIIbβ3, 

which change their conformation from bent conformation to extended conformation with closed 

headpiece (Figure 63). Then β-subunit moves away from α-subunit and the receptor goes into the 

high-affinity state with open headpiece in which it binds fibrinogen and von Willebrand factor, 

resulting in clot formation and clot adherence, respectively195. Thus, inhibition of αIIbβ3 can prevent 

clot formation regardless of the platelet activation pathway196-198. 

 

Figure 63. Conformational changes in integrin αIIbβ3 upon activation and ligand binding. 
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Most antagonists of αIIbβ3 represent peptidomimetics, which mimic RGD or KGD sequence of 

fibrinogen (Figure 64) and bind to the open form of the integrin (Figure 63, Ligand B). There are two 

marketed drugs Tirofiban199 and Eptifibatide200, which are RGD-peptidomimetics, and Abciximab, 

which is a monoclonal antibody specific for an epitope on β3 subunit201. However, these compounds 

have some side effects like inducing thrombocytopenia202, 203, and therefore searching of new 

antagonists is continuing. 

 

Figure 64. RGD peptide sequence and RGD-peptidomimetic tirofiban, the marked anti-platelet drug. 

 

Due to abundant information about activity of known αIIbβ3 antagonists and X-ray structures of 

protein-ligand complexes we were able to implement a comprehensive multi-stage virtual screening 

pipeline which included QSAR and pharmacophore models and molecular docking181. 

We collected two data sets: (1) 338 compounds with reported affinity values for αIIbβ3 and (2) 

453 compounds tested for antiaggregation activity. QSAR models were built using Random Forest 

method and three types of fragmental descriptors: simplexes14, ISIDA fragments 20 and fuzzy pH-

dependent pharmacophoric triplets204. The consensus models demonstrated reasonably high 

performance estimated by 5-fold cross-validation (Table 14). 

 

Table 14. 5-fold external cross-validation vtatistics for consensus 2D QSAR models of affinity for 

αIIbβ3 and antiaggregation activity. AD denotes applicability domain. 

 R2 RMSE R2
AD RMSEAD AD coverage 

affinity for αIIbβ3 0.75 0.76 0.76 0.72 0.97 

antiaggregation activity 0.52 0.77 0.54 0.74 0.99 

 

Three structure-based pharmacophore models were created using LigandScout from three 

available complexes of αIIbβ3 with small molecule antagonists L-739,758, Tirofiban, Eptifibatide 

(PDB codes 2VC2, 2VDM, and 2VDN, respectively). The models performance has been assessed in 

virtual screening of a validation set combining the affinity set (338 compounds) with decoys selected 

from the ChEMBL database (1518 compounds). Due to too large number of pharmacophore features 
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the models were to specific and did not retrieve any compounds from the validation set. Therefore, 

some features were manually removed or made optional. These adjustments significantly improved 

the models performance reaching precision = 0.76–0.86 and recall = 0.13–0.26. The joint application 

of all three models to the validation set slightly improved overall prediction performance (precision = 

0.81 and recall = 0.36), whereas enrichment ratio at 1% and 5% was equal to 5.56 and 6.78, 

respectively. 

In order to improve recall of pharmacophore models we developed ligand-based models based 

on active compounds (pIC50 ≥ 8) from the affinity data set. We used important information which 

was retrieved from structure-based pharmacophore models – the distance between key features, 

centers of negative and positive charges, should be around 16-17Å (Figure 65, top). Therefore, we 

pre-filtered conformers of training set compounds to satisfy this criterion to get more reasonable 

models. We obtain seven models which demonstrated reasonable joint predictive performance 

(precision = 0.67 and recall = 0.93) and higher enrichment ratios than structure-based models: 9.04 

and 7.80 at 1% and 5%, respectively. 

 

Figure 65. The structure-based pharmacophore model of tirofiban (top) and the simplified 2D 

pharmacophore suggested for virtual screening (bottom). 

 

To speed up a virtual screening of large databases, a simple topological 2D pharmacophore 

model has been developed on the basis of structure- based pharmacophores. It consists of only two 

features, centers of positive and negative charges, separated by 13 bonds (Figure 65, bottom). This 

roughly corresponds to the distance of 16 Å separating these features in 3D pharmacophores. These 

features are rarely occurred in typical compounds of chemical database and therefore such pre-

filtering should substantially reduce the number of compounds. 

We validated three docking tools (FlexX, MoE and PLANTS) on three PDB complexes 

(2VC2, 2VDM, and 2VDN) for their ability to discriminate actives from inactives in the affinity data 

set. It was found that MOE has the best performance on 2VDM protein structure (AUC = 0.72), 

whereas PLANTS and FlexX achieved AUC values 0.59 and 0.49, respectively. Therefore, docking 

with MOE on 2VDM protein structure was selected for the virtual screening pipeline. 

Virtual screening of BioinfoDB205 contained about three million of commercially available 

compounds with pharmacophore and QSAR models resulted in no hits. Even after 2D topological 
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pharmacophore only 210 compounds were remained that is explained by the rarity of occurrence pf 

positively and negatively charged centers in commercially available compounds. Therefore, the 

focused virtual compound library has been created using a fragment-based approach. The main 

requirements for new antagonists of αIIbβ3 were derived from the pharmacophore models, docking 

studies, and some experimental observations. They are (i) positively and negatively charged groups 

should be separated by at least 16 Å; (ii) lipophilic fragment should be attached to the acidic part of a 

molecule; and (iii) desirable that the above lipophilic fragment is linked to a H-bond acceptor able to 

bind the Arg214 residue of αIIbβ3. According to these rules various Arg- and Asp-mimetic 

fragments and different linker groups were proposed (Figure 66). A combinatorial virtual library was 

generated by in-house computer program. After discarding synthetically irrelevant structures, the 

remaining 6930 compounds (24066 stereisomers) were used for the screening. 

 

Figure 66. General design principles of the ligands for open form αIIbβ3 and examples of building 

blocks used for generation of a virtual combinatorial library. 

 

All compounds were passed through 2D consensus QSAR model and all 3D pharmacophore 

models that resulted in 93 common hits with predicted affinity pIC50 ≥ 8 and antiaggregation activity 

pIC50 ≥ 7 (Figure 67). 74 compounds passed the molecular docking stage and for them we predicted 

water solubility and toxicity. Two compounds represented by two stereoisomers each were finally 

selected for synthesis. 
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Figure 67. Workflow of the virtual screening of the focused library designed for open form αIIbβ3. 

 

Both synthesized compounds demonstrated high affinity for αIIbβ3 and antiaggregation activity 

(Table 15). Compound 1 was outperformed the reference drug tirofiban. S-isomers of the designed 

compounds were more active than R-isomers but the difference was small. This corresponded to 

molecular docking which predicted close docking scores for different stereoisomers and they had 

very similar binding poses. 

 

Table 15. Affinity for αIIbβ3 and antiaggregation activity of the designed antagonists of the open form 

of αIIbβ3 and tirofiban. 

  
Affinity for fibrinogen 

receptors, IC50 (nM) 

Anti-aggregation 

activity, IC50 (nM) 

 
1 

R 0.22 ± 0.01 6.2 ± 0.9 

S 0.96 ± 0.07 25.0 ± 5 

 
2 

R 62.0 ± 9.0 320 ± 50 

S 79.0 ± 12.0 670 ± 100 

 
Tirofiban 

S 2.4 ± 0.4 32 ± 4 

 

6.2. Antagonists of the closed form of integrin αIIbβ3 as antithrombotic agents 

 

It was suggested that thrombocytopenia caused by existing anti-platelet drugs bound to the 

open form of αIIbβ3 was an immunological response of an organism on the conformational changes in 

integrin αIIbβ3 upon binding with RGD-peptidomimetics206, 207. As a response to this, RUC-1 
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(Figure 68) was discovered by high-throughput screening of about 33000 small molecules208. It had 

weak antiaggregation activity (IC50 = 13 μM), however, according to mutagenesis studies, it binds 

only to the αIIb subunit of the integrin. As it was shown in gel filtration and dynamic light scattering 

experiments, it did not induce transformations leading to open headpiece form (Figure 63, Ligand A). 

Later on, this was confirmed by X-ray study of the complex of RUC-1 and αIIbβ3 
209. In order to 

explore the RUC-1 binding pocket and to obtain additional information concerning binding 

mechanism and induction of conformational changes in the receptor, a series of derivatives of RUC-1 

have been synthesized210. One of them, named RUC-2 (Figure 68), was found some 100 times more 

potent in inhibiting ADP-induced platelet aggregation than RUC-1 (IC50 = 96 nM). At the same time 

RUC-2 does not induce any conformation changes in the αIIbβ3 headpiece, which may reduce adverse 

effects. Later, RUC-3 and RUC-4 ligands with improved antiaggregation activity were designed 

(Figure 68) 211. 

 
RUC-1, IC50 = 13 μM 

 
RUC-2, IC50 = 96 nM 

 
RUC-3, IC50 = 45 nM 

 
RUC-4, IC50 = 33 nM 

Figure 68. Structures of αIIbβ3 antagonists bound to the closed headpiece of the integrin and their 

ADP-induced antiaggregation actiivty 

 

Protein–ligand binding patterns in αIIbβ3 open and closed forms differ. Thus, Tirofiban binds 

with Asp224 residue of the αIIb subunit and with Mg2+ ion of metal ion-dependent adhesion site at 

the β3 subunit in the open form of integrin (Figure 69). RUC-2 binds to Asp224 residue of the αIIb 

subunit but it displaces Mg2+ ion directly binds to Glu220 residue of the β3 subunit. These differences 

are key factors determining ligands effects on the conformational state of the receptor. 

 

Figure 69. Interaction patterns of Tirofiban and RUC-2 compounds with integrin αIIbβ3 in its open 

(left) and closed (right) forms 
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Since very few experimental data on ligands for closed form were available, only structure-

based pharmacophore and docking methods were used to search for new antagonists of αIIbβ3. A 

structure-based pharmacophore model (Figure 70) has been generated with LigandScout using the 

structure of the RUC-2-αIIbβ3 complex (PDB code 3T3M). This model contains: (i) two positively 

charged centers separated by 15.8 Å, (ii) five H-bond donors associated with positive centers, (iii) 

three H-bond acceptors associated with the carbonyl group of the ligand, which binds to αIIbAsp232 

residue via two water molecules (see also Figure 69), (iv) H-bond donor bounded with β3Asn215, 

and (v) one H-bond acceptor and hydrophobic feature shifted toward one of the positive centers. This 

3D pharmacophore model was translated into the additional 2D pharmacophore model which 

consisted of two positively charged centers separated by at least 12 bonds. This is a minimal number 

of bonds required to cover the distance 15.8 Å between these centers in 3D space. 

 

 

Figure 70. Pharmacophore model derived from the RUC-2-αIIbβ3 complex. The following labels for 

pharmacophore features were used: red stars, centers of negative charge; blue stars, centers of 

positive charge; red arrows – H-bond acceptors; green arrows – H-bond donors; yellow spheres, 

hydrophobic parts. Exclusion volumes are not shown for clarity. 

 

To select more optimal docking settings we performed re-docking studies of RUC-2 ligand 

(3T3M) using MOE and FlexX. FlexX demonstrated better performance and could reproduce the 

pose of the ligand with high accuracy (RMSD = 0.78Å), whereas MOE failed to bind the ligand to 

Glu220 residue, which seems to be crucial for ligand-protein recognition, and resulted in higher 

RMSD, 2.2Å. Therefore, FlexX was selected for virtual screening. 

The developed 2D and 3D pharmacophore models were used to screen several large databases 

of commercially available compounds: (i) advanced and HTS Enamine databases, containing 1.5 

million structurally diverse compounds; (ii) REAL Enamine database, containing ∼17 million 

synthetically feasible compounds; and (iii) ZINC database, which ensembles collections of 

compounds from different vendors with overall more than 17 million compounds. This resulted in 50 

compounds, which have been docked with FlexX. Only two high score compounds have been 

selected. One of them is the known drug Nafamostat, a serine protease inhibitor212. This compound 

was also identified by Negri et al. in their structure-based virtual screening of possible αIIbβ3 

antagonists213. Nafamostat has some clear drawbacks: it does not possess high antiaggregation 
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activity (IC50 = 12.5 μM), and it may have some side effects because of its ability to bind different 

proteins, such as thrombin, urokinase, trypsin, plasmin, etc 214-216. It should, however, be noted that 

Nafamostat was introduced as an alternative anticoagulant in continuous renal replacement therapy 

(CRRT) in 1990, but its usage is mainly limited to Japan217, 218. Another selected compound was not 

available for purchasing at that moment. 

Since no compounds were selected from the commercial databases, a small focused virtual 

library of RUC-2 analogues has been designed. According to 3D structure analysis, a ligand for the 

integrin closed form should possess: (i) a positively charged part (preferably pyperazine residue) able 

to interact with the Asp224 residue; (ii) a heterocyclic moiety interacting with the Tyr190 residue; 

(iii) an acceptor group (preferably carbonyl) interacting with the Asp232 residue, and (iv) positively 

charged part (amino group) displacing Mg2+ ion and, in such a way, providing with interactions with 

Glu220 residue of the β3 subunit. Potentially, a molecule combining 6-amino-2-(piperazin-1-yl)-3H-

quinazolin-4-one scaffold connected to amino-group, as it is shown in Figure 71, may fulfill these 

conditions. This scaffold was chosen because substituted quinazolinediones and quinazolinones 

derivatives were known as platelet aggregation inhibitors and fibrinogen receptor antagonists219. 

 

Figure 71. Schematic representation of ligands for closed form of αIIbβ3 used for generation of virtual 

focused library. 

 

29 compounds (41 stereoisomers) were designed and screened against 3D pharmacophore 

models, followed by docking with FlexX and application of solubility and toxicity filters. This 

resulted in 20 hits, three of which were selected for the synthesis and biological tests (Table 16) 181. 

All compounds had pronounced affinity for αIIbβ3 and antiaggregation activity. Compound 4 

demonstrated antiaggregation activity even better than tirofiban and other RUC analogs: RUC-3 

(IC50 = 45 nM) and RUC-4 (IC50 = 33 nM) (Figure 68) 211. 
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Table 16. Affinity for αIIbβ3 and antiaggregation activity of the designed antagonists of the closed 

form of αIIbβ3 and tirofiban. 

Compound 
Affinity for fibrinogen 

receptors, IC50 (nM) 

Anti-aggregation 

activity, IC50 (nM) 

 
3 

5.0 ± 0.8 150 ± 25 

 
4 

2.2 ± 0.3 11 ± 1 

 
5 

3.8 ± 0.4 100 ± 15 

 
Tirofiban 

2.4 ± 0.4 32 ± 4 

 

In the separate study we further studied the structure-activity relationship by modification and 

replacement of the γ-aminobutyric group in the compound 4, but all designed compounds did not 

outperform the parent compound 4. However, we established that further elongation of the aminoacyl 

moiety caused drop in activity in two orders of magnitude. Replacement of γ-aminobytyric moiety in 

the compound 4 with δ-aminovaleric or ε-aminocaproic residues resulted in moderate 

antiaggregation activity, IC50 1.4 µM and 1.3 µM, respectively182. This probably happen due to 

unfavorable binding entropy because these compounds comprising a long flexible poylemthylene 

chain lose many conformational degrees of freedom upon binding. 

 

6.3. Global interpretation of QSAR models on the example of αIIbβ3 antagonist data set 
 

Interpretation of QSAR models predicting a biological activity introduces additional 

complexity for finding of a general structure-activity relationship (SAR) trend (global interpretation). 

In such a case one cannot simply aggregate contributions of identical fragments to reveal a global 

SAR, because the same fragments in different parts of a molecule will bind to different amino acids 

and may have different contributions to the activity. Therefore, the analysis of fragment contributions 

should take into account information about fragment binding inside a protein binding site. 
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The dataset of 338 compounds with measured affinity αIIbβ3 collected from ChEMBL in the 

study described above was used to validate the ability of QSAR models to retrieve relevant patterns 

and establish global SAR trends. All αIIbβ3 antagonists could be represented by the common pattern 

(Figure 72). Compounds consisted of Arg- and Asp-mimetic moieties which were mainly 

represented by positively charged amines and negatively charged derivatives of aliphatic carboxylic 

acids, respectively. The linkers were mainly represented by linear or constrained cyclic aliphatic 

moieties. Arg-mimetics interact mainly with Asp224 on the αIIb chain, where as Asp-mimetics bind 

to Mg2+ ion bound to β3 chain of the integrin. All compounds corresponded to this pattern. Therefore, 

we expected the same or similar binding modes for the majority compounds. 

 

 

Figure 72. Binding pattern of tirofiban, a commercial αIIbβ3 antagonist (PDB code 2VDM) (top). 

Most frequently occurring fragments in the data set of αIIbβ3 antagonists used to built QSAR models 

(bottom). 

 

We built Random Forest (RF), Support Vector Machine (SVM), Gradient boosting (GBM) and 

partial least square (PLS) models using simplex representation of molecules structure (SiRMS) 

(Figure 2). Atoms in simplexes were labeled according to their partial charges (to capture 

electrostatic interactions with a protein), lipophilicity (hydrophobic interactions), molecular 

refraction (dispersive interactions) and H-bonding. All models had reasonably high accuracy 

estimated by 5-fold cross-validation while the consensus model has the highest accuracy (Table 17).  
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Table 17. 5-fold cross-validation performance of models predicting affinity for αIIbβ3. 

 RF GBM SVM PLS consensus 

R2
CV 0.72 0.68 0.70 0.67 0.73 

RMSECV 0.81 0.86 0.82 0.88 0.79 

 

To interpret these models we applied the developed universal interpretation approach described 

in the Chapter 2 (Figure 15). Calculated fragments contribution from individual models had high 

mutual correlation (RPearson = 0.89-0.98), therefore we analyzed interpretation outputs of the 

consensus model only. We grouped contributions of identical fragments for each part of antagonists 

(Asp and Arg-mimetics and linkers) to retrieve the global SAR trend captured by the model (Figure 

73). The two-sided Wilcoxon rank test was applied to test the statistical significance of the 

contributions. However, the calculated contributions are affected by the accuracy and predictive 

performance of the models. For this reason, it is reasonable to compare contributions relative to a 

modeling error (RMSE). Contributions that are within 1 unit of RMSE may be considered 

insignificant, and their analysis should be done with care. 

 

 

Figure 73. Distribution of fragment contributions of αIIbβ3 antagonists calculated from the consensus 

QSAR model (global interpretation). M is the number of compounds containing a given fragment. 

Asterisks refer to statistical significance calculated by the two-sided Wilcoxon rank test (p value): 

***, p < 0.001; **, p < 0.01, *, p < 0.05. 

 

Asp-mimetics were the most diverse part of the αIIbβ3 antagonists. Fragment D8, which 

occurred in many compounds, has a very large range of contribution values due to the substantial 

influence of molecular context. At the same time, fragment D6, which is also present in different 

molecular contexts, has a smaller range of contributions. In general, the variance of contribution 

values of Arg-mimetics is substantially smaller than those of linkers and Asp-mimetics. This 

indicates that the nature of the Arg-mimetic may be more important for binding to the integrin than 

those of the linker and Asp mimetic, whose contributions are highly context-dependent. 
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The global physicochemical interpretation revealed the large contribution of the electrostatic 

term (Figure 74), suggesting that this is the main driving force of the ligand–receptor interaction. 

This assumption can be supported by the following considerations: (1) ligands have at least one 

positively group and one negatively charged group, which is essential for ligand–receptor recognition 

(Figure 75); (2) there are commonly one or two charged H-bonds in the ligand–receptor complexes 

according to previous molecular docking studies181, 182 (Figure 75); (3) the desolvation effect of 

ligands, which depends on the distribution of partial atomic charges, can also play an important role 

in ligand binding and cannot be estimated directly. The less significant effects of H-bonding relative 

to the electrostatic term may be explained by the charged nature of the H-bonds formed between the 

ligands and Asp224 and Arg214 of the fibrinogen receptor. There are few hydrophobic residues in 

the binding pocket, and correspondingly, relatively small contributions of hydrophobic effects of 

fragments are observed in the consensus QSAR model. The contributions of dispersive interactions 

are smallest, as these forces are usually very weak and do not substantially influence affinity values. 

 

 

Figure 74. Median contributions of physicochemical terms in affinity for αIIbβ3 calculated from the 

consensus QSAR model (global interpretation). M is the number of compounds containing a given 

fragment. 

 

Figure 75. Interaction map of a selected ligand with the integrin αIIbβ3 and calculated contributions of 

physicochemical terms for individual fragments from the consensus model (ELS, electrostatic; HYD, 

hydrophobic; HB, hydrogen bonding; DSP, dispersive) (local interprettion). 

 



106 

These findings are in a good agreement with experimentally observed structure-activity 

relationships and suggest reasonable explanations of driving forces of ligand-receptor recognition 

without explicit knowledge about protein binding site, which is not available for QSAR models. It 

also emphasizes importance to consider identical fragments separately if it is expected that they bind 

to different parts of a binding site. Otherwise it would be impossible to get a reasonable picture of 

structure-activity relationships. 

 

6.4. Development of compounds with anti-leichmanial activity 

 

Leishmaniases are a group of important zoonotic diseases that are caused by various parasitic 

kinetoplastid species from the genus Leishmania220. Nineteen different Leishmania species are 

associated with cutaneous and mucocutaneous diseases, but only two (L. donovani and L. major) are 

strongly associated with the deadly visceral forms of the diseases221. Leishmania parasites are 

transmitted to humans and other mammals by an insect vector, the phlebotomine sandfly222. They 

reside as promastigotes in the insect gut221, while in humans, they exist as non-motile intracellular 

amastigotes in infected macrophages223. Leishmaniases are currently endemic in 88 tropical and 

subtropical countries of Asia, Africa, southern Europe and Americas221, 224. They have a significant 

global socioeconomic impact because of their high overall prevalence, co-occurrence with HIV 

infection and spread in non-endemic regions. Worldwide incidence is around 12 million cases per 

year, and mortality is about 50,000, mainly due to visceral forms of the disease221, 224. 

Currently no effective vaccine exists and the disease can be managed only through 

chemotherapy using a limited set of drugs, including pentavalent antimonials, meglumine 

antimoniate, sodium stibogluconate, miltefosine, and amphotericin B225, 226. These drugs have 

become less effective in areas with high disease prevalence and elsewhere, and their use is also 

complicated by high toxicity and side effects227, 228. 

Repurposing of known biologically active compounds is one of possible strategies to identify 

primary hit molecules. We performed a high-throughput screening of compounds from 

LOPAC@1280 library. This is a well-known library consisting of compounds with different 

mechanisms of action. The primary screening identified 57 compounds which at concentration 50 

µM inhibited the growth of L. major FV1-RFP promastigotes at a rate of ≥90% 185. Twenty five 

compounds were ignored due to their previously published activity. From the remaining compounds 

7 compounds demonstrated IC50 below 10 µM. However, 6 out of 7 compounds had high 

cytotoxicity to J774 cells used in the study and they were discarded. Only one compound, 

haloperidol, which is a known dopamine 2 receptor antagonist used as antipsychotic, was selected as 

a final hit (Table 18). However, haloperidol was inactive against intracellular amastigotes of L major 

FV1-RFP and L. mexicana, suggesting that its prospects as an antileishmanial drug are negligible. 
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Table 18. Anti-leishmanial activity of reference compounds and compounds discovered in the study. 

Compound 

IC50, μM 

Promastigotes Amastigotes 

L. major L. mexicana L. major L. mexicana 

 
6 

16.98 ± 0.75 18.26 ± 1.83 not tested not tested 

 
7 

3.42 ± 0.80 2.94 ± 0.06 9.41 ± 1.79 13.29 ± 1.99 

 
Haloperidol 

8.45 ± 0.83 9.18 ± 1.83 inactive inactive 

Amphotericin B 0.40 ± 0.04 0.39 ± 0.08 0.71 ± 0.14 0.60 ± 0.10 

 

To find analogs of haloperidol we performed similarity search in our proprietary library using 

2D pharmacophore fingerprints implemented in RDKit and identified 11 compounds having 

similarity greater than 0.6185. Eight compounds were 1-aryl-4-(phthalimidoalkyl)piperazines229 and 

three 1-aryl-4-(naphthalimidoalkyl)piperazines230. Two of those compounds, 6 and 7, demonstrated 

activity against promastigotes (Table 18) and both of them were not cytotoxic. Experiments against 

intracellular amastigotes of L major FV1-RFP and L. mexicana in infected J774 cells showed that 

compound 7 inhibited their growth in dose-dependent manner with IC50 9.41 ± 1.79 μM and 13.29 ± 

1.99 μM, respectively. In additional experiments it was found that compound 7 did not affect plasma 

membrane integrity, induced collapse the mitochondrial electrochemical potential and caused 

increase in the intracellular Ca2+ concentration in promastigotes of L. major and L. mexicana. This 

suggested that activity of compound 11 could be directly associated with the depolarization of the 

mitochondrial membrane and not to detergent-like effects of membrane acting drugs associated with 

rapid disruption of the plasma membrane. While for the compound 7 activity against serotonin 1a 

receptor was reported, no anxiolytic activity was observed.229 All these make compound 7 promising 

for further studies to identify its molecular targets and perform structural optimization. 
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6.5. Summary 

 

Here we demonstrated how comprehensive virtual screening pipelines in combination with 

carefully designed enumerated virtual libraries could help to identify potent biologically active 

compounds. Within our studies we found highly active αIIbβ3 antagonists which may bind to closed 

or open form of the αIIbβ3 headpiece. The latter may help to avoid side effects of existing drugs, in 

particular thrombocytopenia. Some of the found compounds outperformed the reference drug 

tirofiban as well as other published analogs. 

In a separate study we retrospectively estimated the ability of QSAR model to reveal general 

trends in structure-activity relationships for αIIbβ3 antagonists. We demonstrated that the previously 

suggested structural and physicochemical interpretation approach could identify relevant structural 

motifs and explain the main reason of their activity, electrostatic interactions, that is in a good 

agreement with experimentally observed structure-activity relationships. 

In the last exemplar study we showed that in the era of deep learning a simple similarity search 

can be a powerful tool to find new promising compounds. Within the study of searching for new 

anti-leishmania agents we identified that haloperidol was active against extracellular forms but 

inactive against intracellular forms of Leishmania. The similarity search could identify a promising 

analog of haloperidol with improved biological activity. 
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General conclusions 

 

This work presents a comprehensive overview of research activities conducted over the past 

eleven years in which the author actively participated. The primary focus of these investigations 

revolved around the advancement of methodological techniques within the domain of machine 

learning applied to chemoinformatics. This contribution encompasses several key facets. 

The first among these achievements is the refinement of the simplex representation of 

molecular structures for encoding mixtures of organic molecules with arbitrary compositions. This 

enhancement facilitated the prediction of properties of pure chemicals which the "quasi"-mixture 

approach as well as rate constants of chemical reactions. 

A second significant accomplishment was the development of various approaches for the 

interpretation of QSAR/QSPR models. Notably, the author introduced the universal interpretation 

approach, enabling the direct estimation of the contributions of atoms and fragments from a model. 

This innovation introduced a novel paradigm for QSAR interpretation and permitted structural 

interpretation of any model, irrespective of the employed machine learning methods and descriptors. 

Analogous approaches, founded on atom or fragment "masking", have gained popularity, especially 

with the emergence of deep learning models that were commonly regarded as black boxes. 

Additionally, the author initiated the development of the first benchmark for validating interpretation 

approaches, which has been already adopted by other researchers. 

The author's contributions to machine learning in chemoinformatics also encompass the 

exploration of various multi-instance learning approaches, a field that had long been neglected. It 

was demonstrated that, in multiple cases, multi-conformer models outperformed conventional 2D 

models in predicting biological activity of compounds and enantioselectivity of catalysts. The multi-

instance paradigm, coupled with modern deep learning techniques, promises to advance predictive 

modeling in chemoinformatics. 

A separate research domain in which the author made notable contributions is pharmacophore 

representation and modeling. The implementation of a representation based on stereosensitive 

quadruplets enabled the development of a ligand-based pharmacophore modeling approach suitable 

for large datasets and pharmacophore modeling based on molecular dynamics trajectories of ligand-

protein complexes. This representation approach was particularly beneficial in the context of multi-

conformer modeling using multi-instance techniques. 

The most recent contribution field pertains to structure generation and de novo design. The 

author's fragment-based approach, known as CReM, offers the generation of chemically valid 

structures while allowing control over their synthetic accessibility, a distinct advantage over prior 

fragment-based methodologies. Comparative studies confirmed the competitiveness of this approach 

with modern structure generators relying on neural networks. Furthermore, the CReM framework has 
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been integrated into several third-party tools for de novo design, and ongoing work focuses on its 

integration with QSAR, pharmacophore, and docking approaches to address diverse drug design 

objectives such as scaffold decoration, hit expansion, lead optimization, etc. 

All the methodologies and tools developed as part of this work have been disseminated as 

open-source Python libraries (Annex I), contributing to open science and facilitating further 

advancements in the field of chemoinformatics and drug design. Recent statistics indicate a 

substantial uptake, with more than 4,000 monthly downloads of these libraries. Certain tools are 

accessible as web applications. 

The author's personal commitment extends to the prospective validation of these tools in real-

world projects, aiming to enhance their practical utility. This endeavor has led to successful 

applications of comprehensive virtual screening pipelines as well as straightforward similarity 

searches in the discovery of potent biologically active compounds. The author anticipates that the 

application of the newly developed tools will further enhance drug design pipelines. 

Inevitably, this work raises pertinent questions for future investigations. What is the potential 

utility of contemporary QSAR interpretation methodologies? How can we formulate more effective 

criteria for evaluating the interpretability of models? In what ways can we enhance current 

interpretation techniques? To what extent can multi-instance learning be applied effectively within 

the field of chemoinformatics, and how can we consistently identify key instances in this context? 

How large is the synthetically accessible drug-like chemical space, and to what extent can it be 

encompassed through de novo generation methods? Answers to these and other questions await 

further exploration in subsequent research endeavors. 
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Annex I. The list of developed software and repositories 

 

Machine learning  
 

sirms – 2D descriptors for single compounds, “quasi”-

mixtures, mixtures and reactions  

https://github.com/DrrDom/sirms  

spci – automatic QSAR model building and 

interpretation with GUI  

https://github.com/DrrDom/spci  

rspci – R package to analyze fragment contributions 

from spci output  

https://github.com/DrrDom/rspci  

ibenchmark – benchmark interpretability of machine 

learning models  

https://github.com/ci-lab-cz/ibenchmark  

3D pharmacophore modeling  
 

pmapper – 3D pharmacophore processing, signatures 

and fingerprints  

https://github.com/DrrDom/pmapper  

psearch – automated 3D ligand-based modeling and 

screening  

https://github.com/meddwl/psearch  

pharmd – retrieve 3D pharmacophores from MD 

trajectories and screening  

https://github.com/ci-lab-cz/pharmd  

De novo design  
 

CReM - Python module for structure generation  https://github.com/DrrDom/crem  

Automated pipelines  
 

easydock – Python module to run automatic molecular 

docking using vina, smina and gnina on distributed 

systems 

https://github.com/ci-lab-cz/easydock  

StreaMD – automated pipeline for high-throughput 

MD simulations  

https://github.com/ci-lab-cz/md-scripts  

Auxiliary RDKit repositories  
 

Various RDKit scripts  https://github.com/DrrDom/rdkit-scripts  

Scripts to create local databases for similarity and 

substructure search using RDKit and Chemicalite  

https://github.com/DrrDom/chemicalite-scripts  

 

  

https://github.com/DrrDom/sirms
https://github.com/DrrDom/spci
https://github.com/DrrDom/rspci
https://github.com/ci-lab-cz/ibenchmark
https://github.com/DrrDom/pmapper
https://github.com/meddwl/psearch
https://github.com/ci-lab-cz/pharmd
https://github.com/DrrDom/crem
https://github.com/ci-lab-cz/easydock
https://github.com/ci-lab-cz/md-scripts
https://github.com/DrrDom/rdkit-scripts
https://github.com/DrrDom/chemicalite-scripts
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