Vakuový systém mikroskopu

- EM potřebuje vysoký stupeň vakua ve vzduchu je elektron absorbován do 1 m ve směru šíření
- molekuly ve vzduchu (O₂, N₂, CO₂, H₂O) kontaminují tubus a vzorek
 - antikontaminátor s LN₂ pomáhá udržet vakuum při výměně vzorků (kondenzace nečistot na studeném povrchu antikontaminátoru okolo vzorku)
- jednotlivé části TEM jsou různě náročné vyžadují jiný stupeň vakua (3 oddělené vakuové komory)
- řada ventilů spojených se speciálními vývěvami pracuje v logickém sledu s automatickým řízením

Vakuový systém mikroskopu - antikontaminátor

Vakuový systém mikroskopu

Schema vakuového systému moderního TEM

V (valve) – uzavírací ventily

<u>Vývěvy:</u> **PVP** – rotační vývěva **ODP** – oil diffusion pump **IGP** – ion getter pump **Turbo** – turbomolekulární pumpa

<u>Měření vakua:</u> **Pir** – měrka Piraniho typu **Pen** – měrka Penning typu

<u>Snížení stupně vakua:</u> **Air** (N₂) – pro zvýšení tlaku (snížení vakuua) (např. při výměně vzorku)

- rychlá vizuální kontrola vakua stupeň vakua je vyjádřen odstínem tmavý odstín ⇒ vysoké vakuum
- PVP vyčerpá buffer tank (neběží pořád hlučná) buffer tank využívá ODP
- ODP umožní postupné spuštění IGP a Turbo pumpy

<u>Vakuový systém mikroskopu – typy vývěv</u>

<u>Rotační vývěva (PVP)</u>

- vývěva, ne jejímž výstupu může být atm. tlak
- excentricky umístěný rotor s lopatkami
- lopatky jsou pružinami tlačeny na stěnu komory
- na vstupu je vzduch nasáván a stlačený je přes tlakový ventil vypuštěn ven
- otočný systém je ponořen v olejové lázni

Difúzní olejová vývěva (ODP)

- nutné napojení na rotační vývěvu
- trysky pod tlakem rozstřikují olejové výpary směrem ke stěně komory ⇒
 výpary absorbují molekuly vzduchu
- výpary oleje kondenzují a ztékají dolů ⇒ postupně uvolňují absorbované plyny
- v dolní části se molekuly plynu hromadí a odčerpávají se napojenou vývěvou ven

<u>Vakuový systém mikroskopu – typy vývěv</u>

lontová vývěva (IGP)

- ionty plynu jsou v silném elektrickém poli přitahovány katodami ⇒ reagují s materiálem katody
- uvolněné elektrony z katody ve spirálové trajektorii putují směrem k anodě a dále ionizují molekuly vzduchu
- na katodách se akumulují sloučeniny plynů ⇒ při poklesu účinnosti vývěvy je nutné vyměnit/regenerovat katody

Turbomolekulární vývěva

• lopatky rotoru (až 100000 rpm) sráží molekuly vzduchu přes stator k výfukové části

<u>Vakuový systém mikroskopu – typy vakuometrů</u>

<u>Typ Pirani</u>

- určené pro měření vakua do 10⁻⁵ Torr
- proud zahřívá vlákno ⇒ tepelná ztráta oproti referenci závisí na tlaku (vyšší tlak ⇒ více interakcí s molekulami plynu ⇒ vyšší tepelná ztráta)
- měřeno přes změnu odporu (závisí na teplotě)

A schematic sketch of a Pirani Gauge

Základní pracovní režimy TEM

 TEM lze používat v několika různých režimech – závisí na typu vzorku a na tom, jaké informace o vzorku chceme získat

Rozlišujeme několik základních metod:

- 1. Světlé pole
- 2. Temné pole
- 3. Difrakce
- 4. Low dose
- 5. TEM vysokého rozlišení
- 6. STEM
- 7. Kryogenní TEM
- 8. Kryogenní elektronová tomografie

1. metoda světlého pole

• nejběžnější metoda pro pozorování vzorku v TEM

- zařazena objektivová clona v zadní ohniskové rovině objektivové čočky (zvyšuje kontrast)
- SAD (selected area diffraction) clona je vysunutá
- první čočka projektoru je zaostřena na primární obraz tvořený objektivovou čočkou

 čočka projektoru dále zvětšuje a promítá obraz na stínítko, příp. na detekci

2. metoda temného pole

- vysunutím objektivové apertury excentricky mimo optickou osu TEM necháme procházet pouze difraktované paprsky ⇒ používá se např. pro zvýšení kontrastu krystalických materiálů
- pro eliminaci aberací lze použít nakloněný svazek ⇒ difraktované svazky pak prochází středem objektivové čočky

3. difrakční režim TEM

• difrakční režim pro identifikaci krystalů

- objektivová clona je vyřazena
- SAD clona je zařazena
- první projektorová čočka je zaostřena na zadní ohniskovou rovinu objektivu – difrakční obraz

Difraktogram Si

4. low dose TEM

- používá se pro snímkování biologických vzorků
- biologický vzorek je náchylný na radiační poškození \Rightarrow degradace, změna struktury
- snaha minimalizovat expozici vzorku elektronovým svazkem v místě snímkování ⇒ "low dose" -TEM pracuje v "search, focus a exposure" modu

SEARCH

 malé zvětšení (např. 3kx) – nízká hustota e⁻/A² (minimální radiační poškození)

FOCUS

 vychýlení svazku ⇒ hodnota fokusu je nastavena na jiném místě (neexponujeme oblast vzorku určenou pro snímkování)

EXPOSURE

 snímek je nahrán na místě, které nebylo vystaveno elektronovému svazku při vysokém zvětšení ⇒ eliminace radiačního poškození

4. low dose TEM pro studium biologických vzorků

PROBLEM

- biologický materiál citlivý na radiační poškození
- nízká intenzita elektronového svazku ⇒ nízký poměr signál/šum

ŘEŠENÍ

snímkování v "low dose" režimu s nízkou intenzitou elektronového svazku

obrazová analýza velkého počtu projekcí (automatické snímkování velkého počtu obrázků)

LOW DOSE MODE (search, focus, exposure)

selection of positions

LOW DOSE MODE (search, focus, exposure)

výběr pozic pro snímkování

RECORDING

přesun na vybrané pozice

LOW DOSE MODE (search, focus, exposure)

Jakým způsobem zvýšit poměr signál/šum v projekci?

<u>Řešení:</u> srovnání a průměrování velkého počtu individuálních projekcí

Snímky izolovaných komplexů fotosystému II – nízký S/N, náhodná orientace projekcí

Výběr projekcí – datový soubor > 20,000 projekcí

Snímky izolovaných komplexů fotosystému II – nízký S/N, náhodná orientace projekcí

Výběr projekcí – datový soubor > 20,000 projekcí

Srovnání projekcí – translace, rotace

Snímky izolovaných komplexů fotosystému II – nízký S/N, náhodná orientace projekcí

Výběr projekcí – datový soubor > 20,000 projekcí

Srovnání projekcí – translace, rotace

Průměrování srovnaných projekcí – zlepšení S/N poměru

Snímky izolovaných komplexů fotosystému II – nízký S/N, náhodná orientace projekcí

Výběr projekcí – datový soubor > 20,000 projekcí

Srovnání projekcí – translace, rotace

Průměrování srovnaných projekcí – zlepšení S/N poměru

Final averaged projection of PSII supercomplex

5. TEM vysokého rozlišení (HRTEM)

- používá se ve studiu nanomateriálů, polovodičů, atd.
 - pro kontrast detailů je důležitý fázový kontrast nutné nastavit správný defocus
 - využívá se tzv. Scherzerův defocus: $\Delta f_{Scherzer} = -1.2\sqrt{C_s\lambda}$
 - bodové rozlišení TEM: $d_{res}(Scherzer) = 0.6\lambda^{3/4}C_s^{1/4} \Rightarrow závisí pouze na vlnové délce a C_s$
 - používají se TEM s malou C_s a vyšší urychlovací napětí (300 kV)
 - náklon vzorku tak, aby umožnil průchod elektronového svazku podél uspořádaných atomů
 - interpretace snímku HRTEM není přímočará (interpretace interference, srovnání s modely)

- TEM obraz atomů Si s vysokým rozlišením
- vzdálenost mez atomy 0.14 nm

Azbestová vlákna na síťce Struktura azbestu s vysokým rozlišením

6. Skenovací transmisní elektronová mikroskopie (STEM)

- TEM doplněný o skenovací cívky a STEM detektory
- elektronový svazek skenuje vzorek pomocí vychylovacích cívek
- bod otáčení (pivot point) je v ohnisku třetí kondenzorové čočky ⇒ skenující paprsek je paralelní s optickou osou TEM
- rozlišení závisí na velikosti fokusovaného svazku

6. STEM detektory

- obraz je zobrazován postupně, detekcí prošlých elektronů během skenování
- používají se polovodičové detektory detekující difrakční obrazec (bright field, dark field)
- intenzita signálu závisí na fázovém posuvu (Braggova difrakce, bright field) a je úměrná protonovému číslu prvků (Z-kontrast, dark field) ⇒ STEM představuje analytickou metodu
- STEM se využívá v kombinaci s dalšími analytickými detektory (EELS, EDX)

7. kryogenní TEM

- využívá se pro studium 3D struktury biologických vzorků izolované proteinové komplexy •
- strukturní analýza vzorku ve zmraženém stavu (teplota 77K)
- nejmodernější kryo TEM dosahuje atomárního rozlišení konkurence X-ray krystalografii

Top model kryogenní TEM – např. Krios (FEI)

- vybaven FEG zdrojem, přímým detektorem elektronů, C_s korekcí, fázovou destičkou
- energetický filtr snižuje šum a zvyšuje kontrast
 - odfiltruje elektrony po neelastickém rozptylu mají menší energii (rychlost) a po průchodu zakřiveným magnetickým polem jsou vychýleny mimo štěrbinu filtru a následnou detekci

7. Kryogenní TEM – příprava vzorku

<u>Problém</u>

- při zmražení vzorku dochází k tvorbě krystalů vody (kubické a hexagonální krystaly)
- krystaly vody jsou velké a neprůchodné pro elektronový svazek \Rightarrow znehodnocují vzorkek

<u>Řešení</u>

- rychlé zmražení vzorku (vitrification) může předejít krystalizaci vody ⇒ *amorfní led*
- pro mražení je využit zkapalněný plyn, nejčastěji kapalný ethan
- kapalný ethan je lepší než kapalný dusík (ethan: bod tání: -183°C, bod varu: -89°C)
 (dusík: bod tání: -210°C, bod varu: -196°C)
- rychlé zmražení zabrání krystalizaci vody
- mražení ruční nebo s využitím automatu Vitrobot (FEI)

7. Kryogenní TEM – zmražení vzorku pomocí Vitrobotu

7. Kryogenní TEM – zmražení vzorku pomocí Vitrobotu

Rychlé zmražení pomocí Vitrobotu

Polara FEI

7. Kryogenní TEM – snímkování a 3D rekonstrukce

7. kryogenní TEM – ukázka studia 3D struktury fotosystému II ze smrku ztepilého

Opatíková a kol. (článek v přípravě)

7. kryogenní TEM – studium struktury viru SARS-CoV-2 způsobující onemocnění COVID-19

Model koronaviru s charakteristickými výběžky S proteinů (glykoproteiny), které využívají pro interakci a navázání na hostitelskou buňku. SARS-CoV-2 způsobující onemocnění COVID-19, patří do této skupiny koronavirů.

7. kryogenní TEM – studium struktury viru SARS-CoV-2 způsobující onemocnění COVID-19

- přelom roku 2019/2020 objevení spojitosti mezi koronaviry (SARS-CoV-2) a nákazou COVID-19
- 15.2. 2020 zveřejnění 3D struktury SARS-CoV-2 "spike" proteinu (S protein) pomocí cryo EM za méně něž 2 týdny (Wrapp D. et al. (2020) Sicence 367 (6484))

7. kryogenní TEM – studium struktury viru SARS-CoV-2 způsobující onemocnění COVID-19

 19. 2. 2020 – zveřejnění struktury SARS-CoV-2 a jeho vazby na lidský receptor ACE2, což umožnilo začátek vývoje vakcín a protilátek (Yan R. et al. (2020) Science 367 (6485))

8. Kryogenní elektronová tomografie

- metoda pro určení 3D obrazu studovaného objektu
- vhodná pro studium buněčných organel, větších objektů, ale i proteinových komplexů, či tenkých řezů

Princip metody

- objekt je v mikroskopu natáčen u širokém úhlovém intervalu a snímkován
- ze získaných 2D snímků je rekonstruován 3D tomogram

Back-projection of weighted projections

8. Kryogenní elektronová tomografie

Experimentální postup

Lučič et al. (2013) JCB 202: 407

- způsob rychlého zmražení závisí na tloušťce vzorku
- u silnějších vzorků se provádí zeslabení vrstvy vzorku pomocí techniky "ion beam milling" nebo je zmražený vzorek na kryo-mikrotomu nařezán na kryo řezy

IMOD software

業 ⊙ BB - Etomo	\odot	\otimes
<u>F</u> ile <u>T</u> ools <u>V</u> iew <u>O</u> ptions <u>H</u> elp		
Axis A: No process		
Avis P Roth	Kill Process	
PARS D BOOK		
Pre-processing		
Not Started		
Coarse Alignment		
Not Started		
Fiducial Model Gen.		
Fine Alignment		
Not Started		
Tomogram Positioning		
Not Started		
Final Aligned Stack		
Not Started		
Tomogram Generation		
Tomogram Combination		
Not Started		
Post-processing		
Not Started		
Clean lin		
Not Started		
Data file: /home/sueh/tutorials/version4-6/tutorialData/	BB.edf	

Data file: /home/sueh/tutorials/version4-6/tutorialData/BB.edf

Data file: /home/sueh/Tutorials/version4-8/tutorialData/BB.edf

Data file: /home/sueh/Tutorials/version4-8/tutorialData/BB.edf

Granální membrány s označenými pozicemi fotosystému II

8. Kryogenní elektronová tomografie – řezy tomogramem

8. Kryogenní elektronová tomografie – sub-tomogram 3D analýza

3D analýza fotosystému II

Kouřil a kol. (2011) Biochim Biophys Acta 1807:368-374.

Model granální membrány

8. Kryogenní elektronová tomografie – template matching

- obtížná identifikace objektů v tomogramu
- metoda "template matching" umožňuje lokalizovat pozici daného proteinu v tomogramu
- je nutné znát 3D strukturu daného proteinu

Förster et al, Methods in Enzymology, 2010

8. Kryogenní elektronová tomografie – ukázky tomogramů

Aktinová vlákna v Dictyostelium discoideum Ribozomy b a

Identifikace proteinů v tomogramu pomocí metody Template matching