Příprava vzorků pro TEM – metoda mrazového sušení

Mrazové sušení

- eliminuje deformaci vzorku jako u sušení při pokojové (příp. vyšší) teplotě
- zabraňuje agregaci částic v porovnání se sušením na vzduchu při pokojové teplotě
- sublimace ledu ze zmraženém vzorku ve vakuu

 při mrazovém sušení buněk může být jako mezistupeň zařazeno nanesení uhlíkového filmu pro dosažení lepšího kontrastu

Příprava vzorků pro TEM – metoda mrazového lomu

Mrazový lom - Freeze-fracture

- rychlé zmražení biologického vzorku zachová nativní organizaci v membráně
- zmražený vzorek je rozlomen pomocí nože nebo odtržením podél plochy s nejmenším odporem
- u biologických membrán dochází k rozštěpení lipidové dvojvrstvy
- repliky jednotlivých vrstev pomocí napařování uhlíku nebo platiny
- repliky lze přímo pozorovat v TEM

RESULTS

Inside of extracellular layer

Inside of cytoplasmic layer

<u>Příprava vzorků pro TEM – metoda mrazového lomu</u>

Metoda mrazového lomu - postup

- 1. Rychlé zmražení vzorku
- mražení v kapalném dusíku nebo etanu

Příprava vzorků pro TEM – metoda mrazového lomu

Metoda mrazového lomu - postup

- 2. Rozlomení zmrzlého vzorku
- zmrazený vzorek je umístěn mezi dva měděné plíšky a následně umístěné do lomného zařízení
- celé zařízení se vzorkem je umístěno do vakuované komory
- nůž mikrotomu oddělí měděné plíšky a rozštěpí vzorek
- místo nože lze použít otočné držáky vzorků, které se rozevřou a rozštěpí vzorek

Příprava vzorků pro TEM – metoda mrazového lomu

Metoda mrazového lomu - postup

- 3. <u>Vytvoření repliky</u>
- napaření uhlíku nebo platiny na vzorek

4. Přečištění repliky a její snímkování v TEM

 rozmražení vzorku s replikou, chemické odstranění biologického materiálu (např. kys. sírová), oplach repliky, umístění repliky na síťku a pozorování v TEM

Thawing in the air or thawing fluids

Repeated rinsing in distilled water

Floating off the replica onto the surface of 70 % sulphuric acid, which will dissolve most specimens in a few hours

Příprava vzorků pro TEM – metoda mrazového odpařování

Sublimace ledu ve vakuu na chlazenou past (LN₂)

- sublimace vede ke zlepšení kontrastu
- napaření uhlíku

Fotosystém II v granální membráně

Simpson 1982, CRC

Příprava vzorků pro SEM

Příprava vzorků pro SEM

SEM má uplatnění v řadě vědních a průmyslových oborů: v biologii – lékařské vědy (anatomie, histologie, patologie), botanika, zoologie, v geologii, mikroelektronice, strojírenství, apod.

- v SEM je možné pozorovat objemné preparáty (limitace velikostí preparátové komory)
- vodivé materiály (kovy, polovodiče) není třeba zvlášť připravovat
- biologické preparáty vyžadují speciální přípravu, (neuvažujeme-li environmentální REM)

Příprava biologických preparátů pro SEM

- biologický materiál je málo vodivý dielektrický \Rightarrow náchylný k poškození elektronovým svazkem
- nabíjení povrchu vede ke zvýšené hustotě náboje a snížení kvality obrazu

dielektrické krystaly bez efektu a s efektem nabíjení povrchu

<u>Řešení</u>

- snížení UN k hodnotám 1 kV (snížená kvalita obrazu)
- použití REM s volitelným vakuem (environmentální REM)
- nutné zajistit vodivost povrchu biologických vzorků ⇒ nanesení vodivé vrstvy
- tvrdé tkáně: kosti, vlasy, zuby, kutikulární vrstvy hmyzu) přímé nanesení vodivé vrstvy
- měkké tkáně: složitější postup: nutné provést fixaci, odvodnění, vysušení a pokovení

Příprava biologických preparátů pro SEM – tvrdé tkáně

Nanesení vodivé vrstvy

- naprašování kovu na povrch vzorku o tloušťce, která nenaruší ultrastrukturu povrchu
- nejčastěji se používá Au, Cu, Al, Ag, Pd, Pt nebo slitina Au-Pd
- čím má naprašovaný kov vyšší Z (protonové číslo), tím lepší kontrast v režimu SE poskytuje

Metoda katodového naprašování

- probíhá v komoře s inertním plynem za sníženého tlaku (1 Pa)
- nanášený materiál tvoří katodu
- preparát umístěn na anodě
- přivedené napětí vyvolá v komoře doutnavý výboj ⇒
 v oblasti katody vzniká tzv. katodový spád
- kladné ionty z výboje bombardují katodu a vyráží z ní částice naprašovaného materiálu (záporné ionty)
- částice dopadají na preparát na anodě a vytváří tenkou vodivou vrstvu

Příprava biologických preparátů pro SEM – měkké tkáně

• při pozorování preparátu v SEM může ve vakuu dojít k vysušování a deformaci preparátu

Vysušení rostlinného pletiva ve vakuu

<u>Řešení:</u>

- použití SEM s volitelným vakuem (environmentální REM)
- u preparátu je nutné provést (1) fixaci a (2) odvodnění (např. alkoholovou řadou) stejně jako u TEM
- (3) vysoušení dehydratačního činidla (alkoholu): nejpoužívanější je "metoda obejití kritického bodu"

Příprava biologických preparátů pro SEM – měkké tkáně

Metoda obejití kritického bodu

- nad kritickým bodem (K), daným kritickou teplotou T_K a tlakem p_K, mizí fázové rozhraní mezi kapalinou a plynnou fází
 - při teplotě nad T_κ nemůže látka existovat v kapalném skupenství a plyn s teplotou vyšší než T_κ nelze stlačováním zkapalnit
- pro odvodnění měkkých tkání se používá kapalný CO2
- pro vodu: p_K = 21.8 MPa, T_K = 647 K (374 °C)
- pro CO₂: p_K = 7.3 MPa, T_K = 304 K (31 °C)
- A výchozí bod, B konečný stav
- proces je automatizován v zařízeních Critical Point Dryer (CPD)
- následné pokovení probíhá standardním způsobem

Elektronová mikroanalýza

(Electronprobe microanalysis EPMA, Electron microprobe analysis EMPA, X-ray microanalysis)

interakce elektronů se vzorkem poskytuje informaci o chemickém složení vzorku

- rentgenové záření
- zpětně rozptýlené elektrony
- katodoluminescence

Detekce rentgenového záření

- TEM, STEM nebo SEM je vybaven analyzátorem, který provádí rozklad rtg podle energie (Energy Dispersive Spectrometer – EDS) nebo podle vlnové délky (Wavelength Dispersive Spectrometer -WDS)
- *kvalitativní analýza* zastoupení chemických prvků ve vzorku
- kvantitativní analýza porovnání ze standardy, problémy s analýzou pokovených preparátů

 dopadající elektron vyrazí z vnitřní slupky elektron atomu – vzniklá díra je zaplněna elektronem z vyšší slupky ⇒ rozdíl energií se vyzáří ve formě rtg

Elektronová mikroanalýza

Detekce rentgenového záření

Všechny možné elektronové přechody spojené s emisí rtg

Přechody mezi slupkami:

 ${\rm K}_{\alpha}$ - díra v K slupce se zaplní z L slupky

 K_{β} - díra v K slupce se zaplní z M slupky

L – díra v L slupce se zaplní z M/N slupky L_{α} - díra v L slupce se zaplní z M slupky L_{β} - díra v L slupce se zaplní z N slupky

Při vysokém rozlišení detekce lze rozlišit pro daný prvek vysokoenergetické přechody : $K_{\alpha 1}$ a $K_{\alpha 2}$ a podobně

EDS detektor

- rentgenového záření detekují více než 10⁶ rtg pulzů/sec a roztřídí je v mnohokanálovém analyzátoru do charakteristického spektra používají *polovodičový Si(Li) detektor chlazený LN₂*
- vysoká citlivost a rozlišení čar charakteristického rtg umožňuje kvalitativní i kvantitativní analýzu

Princip detektoru

- polovodičový detektor v závěrném směru (obráceně polarizovaná PIN dioda)
- fotony rtg záření absorbovány P-I vrstvou indukují vznik párů elektron-díra množství je úměrné energii fotonu rtg
- v závěrném směru dochází k separaci elektronů a děr ⇒ napěťový pulz je úměrný energii rtg
 - detektor obsahuje i příměs Li kompenzuje nečistoty Si, které by ovlivnily signál
- počet párů elektron díra je dán vztahem $n = \frac{E_x}{\overline{\omega}}$, Ex energie fotonu rtg. záření,

 $\overline{\omega}$ - prům. en. pro vytvoření 1 páru (pro Si=3.6eV)

• amplituda napěťového pulzu - $U = \frac{q_e \cdot \bar{n}}{c} = \frac{q_e E_x}{\bar{\omega} \cdot C}$, q_E – elementární náboj, C – celková kapacita systému

- pro snížení temného proudu chlazení LN₂
- Beryliové okénko mezi detektorem a komorou (zabraňuje kondenzaci nečistot na detektoru).
 Odsunutím okénka je možno měřit na nižších energiích.

Princip činnosti spektrometru

- detektor generuje nábojový pulz úměrný energie rtg
- procesor převede pulz na napětí, které je dále zesíleno
- napěťovému pulzu je přiřazena příslušná energie a hodnota je uložena do paměti mnohakanálového analyzátoru (každý kanál má přiřazen interval amplitud – energií, obvykle 10 eV/kanál)
- zobrazení signálu ve formě histogramu

Obtíže detekce rtg záření v EDS

- nastavení geometrie uspořádání detektoru a vzorku (možnost z posuvu a náklonu)
- artefakty při detekci spektra nadměrná mrtvá doba detektoru, "únikové píky", překrývání píků

Nadměrná mrtvá doba (Fig A)

 těsná vzdálenost detektoru a vzorku a vyšší energie svazku mohou vést k zahlcení detektoru, případně k posuvu píků (nahrají se dva rtg pulzy naráz a detektor energie sečte – posun)

"únikové píky" (Fig B)

- vznikají, když část energie rtg záření dopadající na detektor indukuje rtg. Si (detektor)
- rtg. záření vyrazí v detektoru (Si) elektrony z hladiny K, jejichž energie redukuje měřenou energii (energie absorpční hrany Si = 1,84 keV; skutečná energie píku Fe Kα = 6,40 keV; naměřená energie Fe Kα = 4,56 keV)

1500 Counts 1000 500 0.0 0.2 0.4 0.6 0.8 1.0 Energy (keV)

Překrývání píků

- spektrální rozlišení definováno hodnotou FWHM píku (pološířkou)
- dekonvoluce spektra Gausovými křivkami \Rightarrow identifikace složek

Prvková analýza vzorku

Kvalitativní analýza – nejběžnější použití EDS

Semi-kvantitativní analýza - porovnáním intenzit spektrálních čar (při stejné energii svazku)

Kvantitativní analýza – porovnáním se standardem (vysoké čistoty)

- nutnost korekce ZAF na atomové (protonové číslo Z), Absorpci a Fluorescenci rtg. záření ve vzorku (značně komplikované výpočty)
- vhodné je použití tenkých vzorků A a F lze zanedbat (korekce pouze na Z)

Mapování prvku ve vzorku

rtg mapování draslíku

živec – obraz v SE

WDS – vlnově disperzní spektrometrie (wavelength dispersive spectrometry)

- metoda určená k přesnému určení chemického složení mikroobjektů
- u rtg záření emitované vzorkem je detekována vlnová délka
- analyzátorem je krystal o známé vzdálenosti krystalových rovin d
- detektorem je detekováno difrakční maximum dle Braggovy podmínky: $2d \sin \theta = n \cdot \lambda$

(pro známé d určíme λ a energii rtg. záření)

- pro danou pozici Sample-Crystal-Detector je detekována jedna λ (jeden prvek ve vzorku)
- pro prvkovou analýzu nutné měnit pozici Sample-Detector vůči krystalu (pozice na Rowlandově kruhu)
- pro detekci různých prvků je nutné měnit i krystaly (různý parametr d)

WDS – vlnově disperzní spektrometrie (wavelength dispersive spectrometry)

Krystalový detektor – syntetický krystal s velkou hodnotou d (pro analýzu lehkých prvků – Be, B, C, O, N)

<u>Energie dopadajícího svazku elektronů</u> musí být 2 až 2.5 větší než je excitační energie pro daný prvek (energie absorpční hrany – hodnota energie splňuje podmínku ionizace atomu, tj. vytržení elektronu z určité hladiny)

<u>Rozlišení energií</u> u WDS je okolo 5 eV (oproti 150 eV u EDS)

<u>Artefakty ve spektrech WDS</u> – v případě, že difrakční maxima vyšších řádů dopadají blízko čáry, která nás zajímá (lze řešit nastavením spektrometru a citlivostí detekce)

<u>Artefakty způsobené přípravou vzorku</u> - naprášená vrstva vodivého materiálu způsobuje problémy při analýze – překryv píků vzorku a naprášeného kovu ⇒ snaha používat čisté, nekontaminované vzorky

Porovnání WDS a EDS mikroanalytických metod

WDS	EDS
1. Vysoké spektrální rozlišení (2-6 eV)	1. Nízké spektrální rozlišení (130-155 eV)
 Nižší účinnost při nabírání spektra (pomalejší) 	2. Vysoká účinnost při nabírání spektra (rychlejší)
 Vyšší citlivost na změnu geometrie vzorku 	 Nižší citlivost na změnu geometrie vzorku
 Řídké artefakty ve spektru 	 Časté artefakty ve spektru
5. Nevyžaduje LN ₂	5. Vyžaduje LN ₂
6. Dochází k pohybu mechanických částí	 Nedochází k pohybu mechanických částí
 Je nutná relativně vysoká energie svazku 	7. Nízká energie svazku není problémem
8. Nákladné zařízení	 Méně nákladné zařízení

- v praxi se tyto metody velmi vhodně doplňují
- rychlá analýza vzorků pomocí EDS, u vybraných vzorků se aplikuje WDS pro vyšší rozlišení

Energie spektrálních čar charakteristického rentgenového záření

Prvek	z	Čára	Energie (keV)
Be	4	Κα	0.1085
В	5	-	-
С	6	Κα	0.277
TiN	-	-	-
SiO2	-	-	-
Mg	12	Κα1,2	1.25360
	12	Κβ	1.3022
Al	12	Κα1,2	1.48670
	15	Κβ	1.5574
Si	14	-	-
Ti	22	Κα1	4.51084
		Κα2	4.504486
		Κβ1	4.93181
		Кβ	4.93181
		Lα	0.4522
Cr	24	Κα1	5.41472
		Κα2	5.40551
		Κβ	-
		Kb1	5.94671
		La	0.5728

	\square	Κα1	68.8037
		Κα2	66.9895
		La1	9.7133
		La2	9.6280
		Lβ1	11.4423
		Lβ2	11.5847
		Lß3	11.6103
		Lβ4	11.2047
		Lγ1	13.3817
		Lγ2	13.7095
		Ly3	13.8090
Au	79	Ly6	13.7304
		Lγ4	14.2996
		Lγ8	13.6260
		Ly5	12.9743
		Ly9	12.1474
		Lβ10	120617
		Lβ5	11.9163
		Lβ7	11.8106
		Lβ15	11.5667
		Lβ6	11.1602
		Le	10.3083
		Ll	8.4939

Speciální metody elektronové spektroskopie – electron energy-loss spectrum EELS

- doplňková metody EDS ٠
- EELS je vhodnější pro detekci lehčích prvků, EDS pro prvky s vyšším protonovým číslem •
- EELS detekuje energy-loss elektrony hodnota ztráty energie je charakteristická pro daný prvek •
- Ionizace atomu vyžaduje značnou energii měří se "high-energy loss" spektra •
- EELS dosahuje rozlišení < 1eV •

TEM s energetickým filtrem

Low energy loss:

Zero-loss: elektrony prošly vzorkem bez ztráty energie (pružný rozptyl) Plasmon: elektrony vyvolají oscilace volných elektronů 23

Speciální metody elektronové spektroskopie

Příbuzné metody EELS – studují detailně jemnou strukturu částí EELS spektra

- studium vlastností elektronového obalu, interakcí, chemických vazeb
- interpretace výsledků pomocí teoretických modelů a simulací

EXELFS (Extended X-ray edge Electron Loss Fine Structure) - vzdálená jemná struktura elektronových ztrát s rentgenovou absorpční hranou

ELNES (Electron Loss Near Edge Structure) – struktura elektronových ztrát v blízkosti absorpční hrany

podobnost s metodami :

EXAFS (Extended X-ray Absorpton Fine Structure) – vzdálená jemná struktura rentgenové absorpce **XANES** (X-ray Absorption Near Edge Structure) – rentgenová absorpce v blízkosti absorpční hrany

Metody mají společný základ:

- dopadající elektron svazku vyrazí elektron z vnitřní hladiny atomu ionizace
- EXELFS + ELNES sleduje změnu intenzity elektronového svazku po průchodu vzorkem (ne uvolněný elektron)
- **EXAFS + XANES** sleduje změnu intenzity rtg. záření

Mikroskopie skenující sondou

Mikroskopie skenující sondou (Scaning Probe Microscopy)

- mikroskopické techniky využívající pohybu měřící sondy v oblasti blízkého pole vzorku (< 100 nm)
- charakterizace povrchu vzorku v 3D

Základní vlastnosti:

- rozlišení nezávislé na vlnové délce objektu zprostředkovávajícího interakci (foton, elektron), ale závisí na velikosti sondy a konkrétním vzorku
- vhodná pro vizualizaci velkých (stovky mikrometrů) i malých (jednotky nanometrů) oblastí povrchu vzorku se subatomárním rozlišením
- metodu lze používat v řadě různých prostředí (vakuum, vysoký tlak, inertní plyny, kapaliny, nízké teploty, magnetická pole)
- využití při studiu mechanických a elektrických vlastností povrchu vzorku
- metoda náročná na mechanickou stabilitu a řízení pohybu skenující sondy
- obraz je sbírán postupně během skenování doba závisí na požadovaném rozlišení

Mikroskopické techniky se liší:

- konstrukcí sondy
- využívanou fyzikální veličinou (el. proud, síla, teplota)

Skenovací tunelovací mikroskopie

Skenovací tunelovací mikroskopie (STM)

• mikroskopie *tunelovacího proudu* – autoři techniky obdrželi Nobelovu cenu v roce 1986

Princip:

- detekce proudu mezi vodivým hrotem a vodivým vzorkem bez jejich přímého kontaktu
- využití *tunelového jevu* částice (s vlnovým charakterem) s energií *E*₀ může překonat energetickou bariéru *E*₁, i když platí *E*₀ < *E*₁
- pravděpodobnost tunelového jevu pro úzkou bariéru: $T \sim \exp\left[-\frac{2}{\hbar}\int_{0}^{t}\sqrt{2m[E-V(x)]}dx\right]$ m – hm. elektronu, E – energie elektronu, V(x) –průběh bariéry, t – šířka bariéry, ħ – Diracova konst.
- exponenciální závislost proudu nabízí vysoké rozlišení vzdálenosti mezi sondou a vzorkem
- změna vzdálenosti mezi sondou a hrotem o 0.1 nm (pro bariéru 4 eV s tloušťkou 0,5 nm) vyvolá řádový pokles pravděpodobnosti tunelování – odpovídá el. proud v nanoampérech a méně

Velikost a typ interakce mezi hrotem a vzorkem dle vzdálenosti d

1 < d < 10 nm – zanedbatelná interakce, jen při silném napětí

0.3 < d < 1 nm - velmi slabé van der Waalsovy síly - při nízkých napětích (do 5 V) netuneluje

d < 0.3 nm - převládá odpudivá interakce (plynoucí z Pauliho principu)
 - dochází ke kontaktu, proud je určen vodivostí materiálu

E_F - Fermiho energie elektronů

Laterální rozlišení STM

- závisí na tvaru hrotu pro sub-nanometrové rozlišení je nutný ostrý hrot (malý poloměr křivosti) nejlépe s jedním vyčnívajícím vrcholovým atomem ⇒ teče přes něj téměř veškerý proud
 - mění se poloha bodu nejmenší vzdálenosti od vzorku a rozchází se s polohou středu hrotu

- závisí na velikosti skenovacího kroku s rostoucím krokem klesá počet měřících bodů (klesá rozlišení, ale i doba měření) ⇒ nutný kompromis (např. při studiu dynamických dějů)
- závisí na konstrukčních parametrech přístroje přenos vibrací, tepelný drift
- na atomárně hladkých površích lze dosáhnout rozlišení cca. 0.01 nm

<u>Teorie STM</u>

- při přiblížení hrotu a vzorku a podobnosti energetické bariéry teče proud oběma směry a *celkový* proud má nulovou střední hodnotu
- nutné přiložit napětí na hrot a vzorek pro malé napětí lze předpokládat příspěvek pouze jediné energetické hladiny a proud bude násobkem pravděpodobnosti tunelování
- v reálném vzorku pravděpodobnost tunelování závisí nejen na pravděpodobnosti tunelování skrze energetickou bariéru, ale také na obsazení příslušných energetických hladin na obou stranách (elektrony nejsou volné, ale vázané v orbitalech)
- pravděpodobnost tunelování lze popsat různými modely pomáhají interpretovat experimentální data

Tunelovací bariéra po přiložení napětí

STM - princip měření

- 1. mechanický posuv vzorku ke hrotu
- přiložení napětí mezi hrot a vzorek ⇒ jemný posuv vzorku ke hrotu pomocí piezokeramiky (převod elektrického signálu na mechanický pohyb) ⇒ detekce proudu
 - velikost mezery bývá < 1 nm, proud řádově nA, napětí mV až V
- 3. skenování po bodech na jednom celém řádku ve směru osy x (tzv. fast-scan), následuje posun o jeden krok ve směru osy y (tzv. slow-scan) a opět skenování ve směru osy x

STM - režimy měření

1. <u>Režim konstantní výšky</u>

- *pozice* sondy ve směru *osy z se nemění* (nahoru/dolů)
- ukládá se informace o velikosti tunelovacího proudu v daném bodě x, y
- přesnost a rozlišení je dáno stabilitou fixované polohy a dynamickým rozsahem snímače proudu
- <u>nevýhoda</u>: vysoké výčnělky vzorku mohou způsobit poškození sondy i vzorku samotného

2. <u>Režim konstantního proudu</u>

- v každém bodě nad vzorkem se udržuje konstantní hodnota proudu korekce výšky Δz
- při skenování vzorku se ukládají hodnoty: x, y, Δz (příp. odpovídající změna napětí na piezokeramice ΔV_z)
- udržování konstantního proudu se děje pomocí přídavného obvodu zpětné vazby
- přesnost je určena nastavením zpětné vazby
- <u>nevýhoda</u>: přítomnost nevodivých nečistot a vzorku může "zmást" zpětnou vazbu ⇒ zarytí sondy do vzorku, protože zpětná vazba se snaží dosáhnout nastavené hodnoty proudu

<u>Vliv vzorku na kvalitu zobrazení</u>

• závisí na vodivých vlastnostech vzorku

Režim konstantního proudu

Hroty pro STM

- základní vlastnosti: musí být vodivý a ostrý
- dříve se používal rozstřižený drát lze dosáhnout rozlišení asi 1 nm

STM hrot připravený stříháním. Vlevo celkový tvar hrotu, vpravo detail ostrého konce.

- současnost: příprava hrotů metodou chemického leptání
 - reprodukovatelnost přípravy, hrot bez nečistot
 - vhodné kombinovat s další metodou odstranění oxidických vrstev, žíhání v elektrickém poli, aj.
 - lze připravit ideální hrot: čistý, zakončený jedním atomem, dostatečně tuhý

Hroty pro STM

<u>Příprava hrotu z wolframu</u>

• elektrochemické leptání pomocí stejnosměrného nebo střídavého proudu

Stejnosměrný proud

- drát upevněný na mikro-posuvném šroubu je ponořen do elektrolytu (NaOH nebo KOH) a zapojen jako anoda (napětí 13 V), katoda je stěna válce
- tvar a poloměr hrotu je dán meniskem vytvořeným po ponoření hrotu do elektrolytu
- čím je meniskus kratší, tím je výsledný hrot tupější
- poloha menisku je udržována konstantní díky polohovacímu šroubu
- leptání probíhá rychleji po stranách než z čela
- vytváří se současně dva hroty, protože odleptaná vrstva teče po drátě dolů
- kvalita hrotu závisí na rychlosti, s jakou je vypnuto napájení po leptání drátu a na délce ponořené části

Střídavé napětí

- leptání je rychlejší než u stejnosměrného proudu
- vyrobený hrot je kónický, ale méně ostrý

Hrot z platiny

výroba hrotu chemickým leptáním

Používají se i hroty z molybdenu, zlata, niklu

Aplikace STM

Struktura povrchu krystalu Si (111) 7x7

 první příklad aplikace STM pro studium povrchu monokrystalu

Struktura uhlíkových nanotrubiček

Povrch rekonstrukce Si(111) 7 × 7, zobrazený pomocí STM s vyznačenou elementární buňkou

Uhlíková nanotrubička: vlevo model, vpravo STM atomární zobrazení povrchu

Studium molekul adsorbovaných na povrchu látek

Zobrazení molekuly na povrchu (vlevo) a příslušný model (vpravo)

Metody příbuzné STM

• rozvoj skenovací metody STM vedl ke vzniku celé řady odnoží, které jsou však již dost specializované

Některé příklady:

Skenovací kapacitní mikroskopie (SCM)

- používá se především k mapování rozložení náboje dopantů (příměsí) v polovodičích prostorové změny elektrické kapacity
- hrot-vzorek je jako kondenzátor, jehož elektrody jsou tvořeny vodivým vzorkem a hrotem a jsou odděleny dielektrikem (povrchová vrstva vzorku)
- při vložení střídavého napětí vyhodnocujeme kapacitu tohoto kondenzátoru závisí na lokální geometrii vzorku a dielektrickém prostředí

Teplotní skenovací mikroskopie (SThM)

- mapování teploty a teplotní vodivosti
- povrch vzorku je skenován pomocí mikrotermočlánku (např. W a Ni)
 - jeden kov je nosný a odizolovaný kromě špičky
 - na izolační vrstvě je druhý kov spojení kovů pouze v oblasti špičky
- termočlánek je zahříván proudem a je měřena změna termonapětí při přiblížení ke vzorku (vzduch má menší tepelnou vodivost)
- variace termonapětí odráží změny v tepelné vodivosti vzorku

Skenovací tunelová potenciometrie (STP)

- oproti klasické STM využívá dvě elektrody přiložené na protilehlé strany vzorku
- tunelovací napětí na hrotu je střídavé a měří se tunelový proud a napětí
- stanovení rozložení napětí podél povrchu (např. zkoušení polovodičových součástek)

Metody příbuzné STM

Mikroskopie iontovou sondou (SICM)

- vzorek je ponořen do elektrolytu
- sonda s elektrolytem ve tvaru mikropipety s hrotovým otvorem
- elektrody ve vzorku a mikropipetě měří během skenování iontovou vodivost
- vodivost závisí na topografii vzorku např. membrána s póry

Metody příbuzné STM

Skenovací optická mikroskopie v blízkém poli (SNOM/NSOM)

- spojení optické mikroskopie blízkého pole s mikroskopií se skenující sondou
- pohyb skenující sondy je zajištěn pomocí piezoelektrické vidličky
- oscilace vidličky při rezonanční frekvenci
- změna frekvence udává informaci o změně interakce a vzdálenosti vidličky od vzorku (zpětná vazba)

